
printed April 14, 2000

CLASSICS ILLUSTRATED

GROUP THEORY

Exceptional Lie groups as invariance groups

Predrag Cvitanović
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Chapter 1

Introduction

One simple field-theory question started this project; what is the group theoretic
factor for the following QCD gluon self-energy diagram

=? (1.1)

I first computed the answer for SU(n). There was a hard way of doing it, using
Gell-Mann fijk and dijk coefficients. There was also an easy way, where one could
doodle oneself to the answer in a few lines. This is the “birdtracks” method
which will be described here. It works nicely for SO(n) and Sp(n) as well. Out
of curiosity, I wanted the answer for the remaining five exceptional groups. This
engendered further thought, and that which I learned can be better understood
as the answer to a different question. Suppose someone came into your office
and asked, “On planet Z, mesons consist of quarks and antiquarks, but baryons
contain three quarks in a symmetric color combination. What is the color group?”
The answer is neither trivial, nor without some beauty (planet Z quarks can come
in 27 colors, and the color group can be E6).
Once you know how to answer such group-theoretical questions, you can an-

swer many others. This monograph tells you how. Like the brain, it is divided
into two halves; the plodding half and the interesting half.
The plodding half describes how group theoretic calculations are carried out

for unitary, orthogonal and symplectic groups. Probably none of that is new, but
the methods are helpful in carrying out theorists’ daily chores, such as evaluat-
ing Quantum Chromodynamics group theoretic weights, evaluating lattice gauge
theory group integrals, computing 1/N corrections, evaluating spinor traces, eval-
uating casimirs, implementing evaluation algorithms on computers, and so on.
The interesting half describes the “exceptional magic” (a new construction

of exceptional Lie algebras) and the “negative dimensions” (relations between
bosonic and fermionic dimensions). The methods used are applicable to grand
unified theories and supersymmetric theories. Regardless of their immediate util-
ity, the results are sufficiently intriguing to have motivated this entire undertak-
ing.

1



2 CHAPTER 1. INTRODUCTION

There are two complementary approaches to group theory. In the canonical
approach one chooses the basis, or the Clebsch-Gordan coefficients, as simply as
possible. This is the method which Killing [87] and Cartan [88] used to obtain the
complete classification of semi-simple Lie algebras, and which has been brought
to perfection by Dynkin [90]. There exist many excellent reviews of applications
of Dynkin diagram methods to physics, such as the review by Slansky [71].
In the tensorial approach, the bases are arbitrary, and every statement is

invariant under change of basis. Tensor calculus deals directly with the invariant
blocks of the theory and gives the explicit forms of the invariants, Clebsch-Gordan
series, evaluation algorithms for group theoretic weights, etc.
The canonical approach is often impractical for physicists’ purposes, as a

choice of basis requires a specific coordinatization of the representation space.
Usually, nothing that we want to compute depends on such a coordinatization;
physical predictions are pure scalar numbers (“color singlets”), with all tensorial
indices summed. However, the canonical approach can be very useful in deter-
mining chains of subgroup embeddings. We refer reader to the Slansky review [71]
for such applications; here we shall concentrate on tensorial methods, borrowing
from Cartan and Dynkin only the nomenclature for identifying irreducible repre-
sentations. Extensive listings of these are given by McKay and Patera [91] and
Slansky [71].
To appreciate the sense in which canonical methods are impractical, let us

consider using them to evaluate the group-theoretic factor (1.1) for the excep-
tional group E8. This would involve summations over 8 structure constants.
The Cartan-Dynkin construction enables us to construct them explicitly; an E8

structure constant has about 2483/6 elements, and the direct evaluation of (1.1)
is tedious even on a computer. An evaluation in terms of a canonical basis would
be equally tedious for SU(16); however, the tensorial approach (described in the
example at the end of this section) yields the answer for all SU(n) in a few steps.
This is one motivation for formulating a tensorial approach to exceptional

groups. The other is the desire to understand their geometrical significance. The
Killing-Cartan classification is based on a mapping of Lie algebras onto a Dio-
phantine problem on the Cartan root lattice. This yields an exhaustive classifica-
tion of simple Lie algebras, but gives no insight into the associated geometries. In
the 19th century, the geometries, or the invariant theory was the central question
and Cartan, in his 1894 thesis, made an attempt to identify the primitive invari-
ants. Most of the entries in his classification were the classical groups SU(n),
SO(n) and Sp(n). Of the five exceptional algebras, Cartan [89] identified G2 as
the group of octonion isomorphisms, and noted already in his thesis that E7 has
a skew-symmetric quadratic and a symmetric quartic invariant. Dickinson [92]
characterized E6 as a 27-dimensional group with a cubic invariant1. The fact
that the orthogonal, unitary and symplectic groups were invariance groups of
real, complex and quaternion norms suggested that the exceptional groups were

1I am indebted to G. Seligman for this reference.
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3

associated with octonions, but it took more than another fifty years to estab-
lish the connection. The remaining four exceptional Lie algebras emerged as
rather complicated constructions from octonions and Jordan algebras, known as
the Freudenthal-Tits construction. A mathematician’s history of this subject is
given in a delightful review by Freudenthal [93]. The subject has twice been taken
up by physicists, first by Jordan, von Neumann and Wigner [63], and then in the
1970’s by Gürsey and collaborators. Jordan et al.’s effort was a failed attempt
at formulating a new quantum mechanics which would explain the neutron, dis-
covered in 1932. However, it gave rise to the Jordan algebras, which became a
mathematics field in itself. Gürsey et al. took up the subject again in the hope
of formulating a quantum mechanics of quark confinement; the main applications
so far, however, have been in building models of grand unification.
Although beautiful, the Freudenthal-Tits construction is still not practical for

the evaluation of group-theoretic weights. The reason is this; the construction
involves [3× 3] octonian matrices with octonian coefficients, and the 248 dimen-
sional defining space of E8 is written as a direct sum of various subspaces. This
is convenient for studying subgroup embeddings [85], but awkward for group-
theoretical computations.
The inspiration for the primitive invariants construction came from the ax-

iomatic approach of Springer [94, 95] and Brown [96]: one treats the defining
representation as a single vector space, and characterizes the primitive invariants
by algebraic identities. This approach solves the problem of formulating efficient
tensorial algorithms for evaluating group-theoretic weights, and also yields some
intuition about the geometrical significance of the exceptional Lie groups. Such
intuition might be of use to quark-model builders. For example, because SU(3)
has a cubic invariant εabcqaqbqc, QCD based on this color group can accommodate
3-quark baryons. Are there any other groups that could accommodate 3-quark
singlets? As we shall show, the defining representations of G2, F4 and E6 are
some of the groups with such invariants.
Beyond being a mere computational aid, the primitive invariants construc-

tion of exceptional groups yields several unexpected results. First, it generates
in a somewhat magical fashion a triangular array of Lie algebras, depicted in
fig. 1.1. This is a classification of Lie algebras different from Cartan’s classifi-
cation; in particular, all exceptional Lie groups appear in the same series (the
bottom line of fig. 1.1). The second unexpected result is that many groups and
group representations are mutually related by interchanges of symmetrizations
and antisymmetrizations, and replacement of the dimension parameter n by −n.
I call this phenomenon “negative dimensions”.
For me, the greatest surprise of all is that in spite of all the magic and the

strange diagrammatic notation, the resulting manuscript is in essence not very
different fromWigner’s [2] classic group theory book. Regardless of whether one is
doing atomic, nuclear or particle physics, all physical predictions (“spectroscopic
levels”) are expressed in terms of Wigner’s 3n − j coefficients, which can be

printed April 14, 2000 ∼DasGroup/book/chapter/intro.tex 14apr2000
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Figure 1.1: The “magic triangle” for Lie algebras. The Freudenthal “magic square” is
marked by the dotted line. The number in the lower left corner of each entry is the dimension
of the defining representation. For more details consult chapter 20.

evaluated by means of recursive or combinatorial algorithms.
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Chapter 2

A preview

This report on group theory had mutated greatly throughout its genesis. It arose
from concrete calculations motivated by physical problems; but as it was written,
the generalities were collected into introductory chapters, and the applications
receded later and later into the text.
As a result, the first seven chapters are largely a compilation of definitions and

general results which might appear unmotivated on the first reading. The reader
is advised to work through the examples, sect. 2.2 and sect. 2.3 in this chapter,
jump to the topic of possible interest (such as the unitary groups, chapter 8, or
the E8 family, chapter 16), and backtrack when necessary.
The goal of these notes is to provide the reader with a set of basic group-

theoretic tools. They are not particularly sophisticated, and they rest on a few
simple ideas. The text is long because various notational conventions, examples,
special cases and applications have been laid out in detail, but the basic concepts
can be stated in a few lines. We shall briefly state them in this chapter, together
with several illustrative examples. This preview presumes that the reader has
considerable prior exposure to group theory; if a concept is unfamiliar, the reader
is referred to the appropriate section for a detailed discussion.

2.1 Basic concepts

An average quantum theory is constructed from a few building blocks which we
shall refer to as the defining representation. They form the defining multiplet of
the theory - for example, the “quark wave functions” qa. The group-theoretical
problem consists of determining the symmetry group, ie. the group of all linear
transformations

q′a = Ga
bqb a, b = 1, 2, . . . , n ,

which leave invariant the predictions of the theory. The [n× n] matrices G form
the defining representation of the invariance group G. The conjugate multiplet

5



6 CHAPTER 2. A PREVIEW

(“antiquarks”) transforms as

q′a = Gabqb .

Combinations of quarks and antiquarks transform as tensors, such as

p′aq
′
br

′c = Ga
c
b,
e
d
fpfqer

d ,

Ga
c
b,
e
d
f = G f

a G
e
b G

c
d .

(see sect. 3.1.4). Tensor representations are plagued by a proliferation of indices.
These indices can either be replaced by a few collective indices

α =
{
c
ab

}
, β =

{
ef
d

}
,

q′α = Gα
βqβ , (2.1)

or represented diagrammatically

G = .

(Diagrammatic notation is explained in sect. 3.6). Collective indices are con-
venient for stating general theorems; diagrammatic notation speeds up explicit
calculations.
A polynomial

H(q, r, s, . . .) = h ...c
ab... qarb . . . sc

is an invariant if (and only if) for any transformation G ∈ G and for any set of
vectors q, r, s, . . . (see sect. 3.3)

H(Gq,Gr,Gs, . . .) = H(q, r, s, . . .) . (2.2)

An invariance group is defined by its primitive invariants, ie. by a list of the
elementary “singlets” of the theory. For example, the orthogonal group O(n) is
defined as the group of all transformations which leave the length of a vector in-
variant (see chapter 9). Another example is the color SU(3) of QCD which leaves
invariant the mesons (qq̄) and the baryons (qqq) (see sect. 14.2). A complete list
of primitive invariants defines the invariance group via the invariance conditions
(2.2); only those transformations which respect them are allowed.
It is not necessary to list explicitly the components of primitive invariant

tensors in order to define them. For example, the O(n) group is defined by the
requirement that it leaves invariant a symmetric and invertible tensor gab = gba,
det(g) �= 0. Such definition is basis independent, while a component definition
g11 = 1, g12 = 0, g22 = 1, . . . relies on a specific basis choice. We shall define
all simple Lie groups in this manner, specifying the primitive invariants only by

∼DasGroup/book/chapter/preview.tex 14apr2000 printed April 14, 2000



2.1. BASIC CONCEPTS 7

their symmetry, and by the basis-independent algebraic relations that they must
satisfy.
These algebraic relations (which we shall call primitiveness conditions) are

hard to describe without first giving some examples. In their essence they are
statements of irreducibility: for example, if the primitive invariant tensors are δab ,
habc and habc, then habchcbe must be proportional to δea, as otherwise the defining
representation would be reducible. (Reducibility is discussed in sect. 3.4, sect. 3.5
and chapter 4).
The objective of physicist’s group-theoretic calculations is a description of

the spectroscopy of a given theory. This entails identifying the levels (irreducible
multiplets), the degeneracy of a given level (dimension of the multiplet) and the
level splittings (eigenvalues of various casimirs). The basic idea that enables us
to carry this program through is extremely simple: a hermitian matrix can be
diagonalized. This fact has many names: Schur’s lemma, Wigner-Eckart theorem,
full reducibility of unitary representations, and so on (see sect. 3.4 and sect. 4.3).
We exploit it by constructing invariant hermitian matrices M from the primitive
invariant tensors. M ’s have collective indices (2.1) and act on tensors. Being
hermitian, they can be diagonalized

CMC† =



λ1 0 0 . . .
0 λ1 0
0 0 λ1

λ2
...

. . .


 ,

and their eigenvalues can be used to construct projection operators which reduce
multiparticle states into direct sums of lower-dimensional representations (see
sect. 3.4):

Pi =
∏
j �=i

M − λj1
λi − λj

= C†




. . .
...

. . . 0
. . . 0

...

1 0 . . . 0
0 1
...

. . .
...

0 . . . 1

...

0 . . .
0 . . .
...
. . .



C . (2.3)

An explicit expression for the diagonalizing matrix C (Clebsch-Gordan coeffi-
cients, sect. 3.7) is unnecessary – it is in fact often more of an impediment than
an aid, as it obscures the combinatorial nature of group theoretic computations
(see sect. 3.12).
All that is needed in practice is knowledge of the characteristic equation for

the invariant matrix M (see sect. 3.4). The characteristic equation is usually
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8 CHAPTER 2. A PREVIEW

a simple consequence of the algebraic relations satisfied by the primitive invari-
ants, and the eigenvalues λi are easily determined. λi’ s determine the projection
operators Pi, which in turn contain all relevant spectroscopic information: the
representation dimension is given by trPi, and the casimirs, 6j’s, crossing matri-
ces and recoupling coefficients (see chapter 4) are traces of various combinations
of Pi’s. All these numbers are combinatoric; they can often be interpreted as the
number of different colorings of a graph, the number of singlets, and so on.
The invariance group is determined by considering infinitesimal transforma-

tions

Gba � δab + iεi(Ti)ba .
The generators Ti are themselves clebsches, elements of the diagonalizing ma-
trix C for the tensor product of the defining representation and its conjugate.
They project out the adjoint representation, and are constrained to satisfy the
invariance conditions (2.2) for infinitesimal transformations (see sect. 3.9 and
sect. 3.10):

(Ti)a
′
a h

c...
a′b... + (Ti)

b′
b h

c...
ab′... − (Ti)cc′h c′...

ab... + . . . = 0

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

+
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

−
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

+ . . . = 0 . (2.4)

As the corresponding projector operators are already known, we have an explicit
construction of the symmetry group (at least infinitesimally – we will not consider
discrete transformations).
If the primitive invariants are bilinear, the above procedure leads to the fa-

miliar tensor representations of classical groups. However, for trilinear or higher
invariants the results are more surprising. In particular, all exceptional Lie groups
emerge in a pattern of solutions which we will refer to as a “magic triangle”. The
logic of the construction can be schematically indicated by the following chains
of subgroups (see chapter 15):

primitive invariants invariance group
qq SU(n)
qq SO(n) Sp(n)
qqq G2 + . . . F4 + . . . E6 + . . .
qqqq E7 + . . .

higher order E8 + . . .

In the above diagram the arrows indicate the primitive invariants which charac-
terize a particular group. For example, E7 primitives are a sesquilinear invariant
qq̄, a skew symmetric qp invariant and a symmetric qqqq (see chapter 19).
The strategy is to introduce the invariants one by one, and study the way

in which they split up previously irreducible representations. The first invari-
ant might be realizable in many dimensions. When the next invariant is added
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2.2. FIRST EXAMPLE: SU(N) 9

(sect. 3.5), the group of invariance transformations of the first invariant splits
into two subsets; those transformations which preserve the new invariant, and
those which do not. Such decompositions yield Diophantine conditions on rep-
resentation dimensions. These conditions are so constraining that they limit the
possibilities to a few which can be easily identified.
To summarize; in the primitive invariants approach, all simple Lie groups,

classical as well as exceptional, are constructed by (see chapter 20):

i) defining a symmetry group by specifying a list of primitive invariants,

ii) using primitiveness and invariance conditions to obtain algebraic relations
between primitive invariants,

iii) constructing invariant matrices acting on tensor product spaces,

iv) constructing projection operators for reduced representation from charac-
teristic equations for invariant matrices.

Once the projection operators are known, all interesting spectroscopic numbers
can be evaluated.
The foregoing run through the basic concepts was inevitably obscure. Per-

haps working through the next two examples will make things clearer. The first
example illustrates computations with classical groups. The second example is
more interesting; it is a sketch of construction of irreducible representations of
E6.

2.2 First example: SU(n)

How do we describe the invariance group that preserves the norm of a complex
vector? The list of primitives consists of a single primitive invariant

m(p, q) = δab p
bqa =

n∑
a=1

(pa)∗qa .

The Kronecker δab is the only primitive invariant tensor. We can immediately
write down the two invariant matrices on the tensor product of the defining
space and its conjugate:

identity : 1a cd,b = δ
a
b δ

c
d =
d

a

c

b

trace : T a cd,b = δ
a
dδ

c
b =
d

a

c

b
.
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10 CHAPTER 2. A PREVIEW

The characteristic equation for T written out in the matrix, tensor and birdtrack
notations is

T 2 = nT

T a fd,e T
e c
f,b = δadδ

f
e δ

e
fδ

c
b = nT

a c
d,b

= = n .

Here we have used δee = n, the dimension of the defining vector space. The roots
are λ1 = 0, λ2 = n, and the corresponding projection operators are

SU(n) adjoint rep: P1 = T−n1
0−n = 1 − 1

nT

= − 1
n

U(n) singlet: P2 = T−0·1
n−1 =

1
nT =

1
n .

(2.5)

Now we can evaluate any number associated with the SU(n) adjoint representa-
tion, such as its dimension and various casimirs.
The dimensions of the two representations are computed by tracing the cor-

responding projection operators (see sect. 3.4)

SU(n) adjoint: d1 = trP1 = = − 1
n

= δbbδ
a
a −
1
n
δbaδ

a
b

= n2 − 1
singlet: d2 = trP2 =

1
n

= 1 .

To evaluate casimirs, we need to fix the overall normalization of the generators
of SU(n). Our convention is to take

δij = trTiTj = birdTrack . (2.6)

The value of the quadratic casimir for the defining representation is computed
by substituting the adjoint projection operator

SU(n) : CF δba = (TiTi)
b
a = a b = a b −

1
n
a b

=
n2 − 1
n

a b . (2.7)

In order to evaluate the quadratic casimir for the adjoint representation, we
need to replace the structure constants iCijk by their Lie algebra definition (see
sect. 3.10)

TiTj − TjTi = iCijk

− =
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2.2. FIRST EXAMPLE: SU(N) 11

Tracing with Tk we can express Cijk in terms of the defining representation
traces:

iCijk = tr (TiTjTk) − tr (TjTiTk)

= −

The adjoint quadratic casimir CimnCnmj is now evaluated by first eliminating
Cijk’s in favor of the defining representation:

δijCA = i j = 2 (2.8)

The remaining Cijk can be unwound by the Lie algebra commutator

= − (2.9)

We have already evaluated the quadratic casimir (2.7) in the first term. The
second term we evaluate by substituting the adjoint projection operator

= − 1
n

= − 1
n

tr (TiTkTjTk) = (Ti)ba(P1)ad,
c
b(Tj)

d
c = (Ti)

a
a(Tj)

c
c −
1
n
(Ti)ba(Tj)

a
b

The (Ti)aa(Tj)
c
c term vanishes by the tracelessness of Ti’s. This can be considered

a consequence of the orthonormality of the two projection operators P1 and P2

in (2.5) (see (3.47)):

0 = P1P2 = ⇒ trTi = = 0 (2.10)

Combining the above expressions we finally obtain

CA = 2
(
n2 − 1
n

+
1
n

)
= 2n . (2.11)

The problem (1.1) that started all this is evaluated the same way. First we relate
the adjoint quartic casimir to the defining casimirs:

= −

= − − . . .

= − − . . .

= − − + − . . .

=
n2 − 1
n

− +
2
n

+ − 1
n

+ . . .
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12 CHAPTER 2. A PREVIEW

and so on. The result is

SU(n) : = n

{
+

}
+ 2
{

+ +
}

(2.12)

(1.1) is now reexpressed in terms of the defining representation casimirs:

= 2n2
{

+
}

+2n
{

+ . . .
}
+ 4
{

+ . . .
}

The first two terms are evaluated by inserting the gluon projection operators

SU(n) : = − 1
n

(2.13)

=
(
n2 − 1
n

)2

− 1
n

+
1
n2

=
(
n2 − 2 + 1

n2
− 1
n

(
n− 1
n

)
+
1
n2

)

=
(
n2 − 3 + 3

n2

)
and the remaining terms have already been evaluated. Collecting everything
together, we finally obtain

SU(n) : = 2n2(n2 + 12) (2.14)

This example was unavoidably lengthy; the main point is that the evaluation
is performed by a substition algorithm and is easiliy automated. Any graph,
no matter how complicated, is eventually reduced to a polynomial in traces of
δaa = n, ie. the dimension of the defining representation.

2.3 Second example: E6 family

What invariance group preserves norms of complex vectors, as well as a symmetric
cubic invariant

D(p, q, r) = dabcpaqbrc = D(q, p, r) = D(p, r, q) ?

We analyze this case following the steps of the summary of sect. 2.1:

i) primitive invariant tensors:

δba = a b , dabc =
a

b c

dabc = (dabc)∗ =
a

b c
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2.3. SECOND EXAMPLE: E6 FAMILY 13

ii) primitiveness: daefdefb must be proportional to δab , the only primitive two-
index tensor. We use this to fix the overall normalization of dabc’s:

=

iii) invariant hermitian matrices: We shall construct here the adjoint representa-
tion projection operator on the tensor product space of the defining representation
and its conjugate. All invariant matrices on this space are

δab δ
c
d

d

a

c

b
, δadδ

c
b

d

a

c

b
, dacedebd = .

They are hermitian in the sense of being invariant under complex conjugation
and transposition of indices (see (3.18)).
The adjoint projection operator must be expressible in terms of the four-index

invariant tensors listed above:

(Ti)ab (Ti)
d
c = A(δac δ

d
b +Bδ

a
b δ

d
c + Cd

adedbce)

= A

{
+B + C

}

iv) invariance. The cubic invariant tensor satisfies (2.4)

+ + = 0 .

Contracting with dabc we obtain

+ 2 = 0 .

Contracting next with (Ti)ba, we get an invariance condition on the adjoint pro-
jection operator:

+ 2 = 0 .

Substituting the adjoint projection operator yields the first relation between the
coefficients in its expansion:

0 = n+B + C + 2
{

+B + C
}

0 = B + C +
n+ 2
3
.
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14 CHAPTER 2. A PREVIEW

v) the projection operators should be orthonormal, PµPσ = Pµδµσ. The adjoint
projection operator is orthogonal to the singlet projection operator P constructed
in sect. 2.2. This yields the second relation on the coefficients:

0 = PAP1

0 =
1
n

= 1 + nB + C .

Finally, the overall normalization factor A is fixed by PAPA = PA:

= = A
{
1 + 0− C

2

}
.

Combining the above 3 relations we obtain the adjoint projection operator for
the invariance group of a symmetric cubic invariant

=
2
9 + n

{
3 + − (3 + n)

}
.

The corresponding characteristic equation, mentioned in the point iv of the sum-
mary of sect. 2.1 is given in (??).
The dimension of the adjoint representation is obtained by tracing the pro-

jection operator

N = δii = = = nA(n+B + C) =
4n(n− 1)
n+ 9

This Diophantine condition is satisfied by a small family of invariance groups,
discussed in chapter 17. The most interesting member of this family is the ex-
ceptional Lie group E6, with n = 27 and N = 78.
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Chapter 3

Invariants and reducibility

Basic group theoretic notions are introduced groups, invariants, tensors and the
diagrammatic notation for invariant tensors.
The basic idea is simple; a hermitian matrix can be diagonalized. If this

matrix is an invariant matrix, it decomposes the representations of the group
into direct sums of lower dimensional representations.
The key results are the construction of projection operators from invariant ma-

trices (3.45), the Clebsch-Gordan coefficients representation of projection opera-
tors (3.73), the invariance conditions (3.91) and the Lie algebra relations (3.103).

3.1 Preliminaries

In this section we define basic building blocks of the theory to be developped here:
groups, vector spaces, algebras, etc. This material is covered in any introduction
to group theory [7, 5]. Most of sect. 3.1.2 to sect. 3.1.4 is probably known to the
reader, and profitably skipped on the first reading.

3.1.1 Groups

Definition. A set of elements g ∈ G forms a group with respect to multiplication
G × G → G if

(a) the set is closed with respect to multiplication; for any two elements a, b ∈ G,
the product ab ∈ G.

(b) the multiplication is associative

(ab)c = a(bc)

for any three elements a, b, c ∈ G.

(c) there exists an identity element e ∈ G such that

eg = ge for any g ∈ G

15



16 CHAPTER 3. INVARIANTS AND REDUCIBILITY

(d) for any g ∈ G there exists an inverse g−1 such that

g−1g = gg−1 = e .

If the group is finite, the number of elements is called the order of the group
and denoted |G|.
If the multiplication ab = ba is commutative for all a, b ∈ G, the group is

abelian.
Two groups with the same multiplication table are said to be isomorphic.

Definition. A subgroup H ≤ G is a subset of G that forms a group under
multiplication. e is always a subgroup; so is G itself.

Definition. A cyclic group is a group generated from one of its elements, called
the generator of the cyclic group. If n is the minimum integer such that an = e,
the set G = {e, a, a2, · · · , an−1} is the cyclic group. As all elements commute,
cyclic groups are abelian. Every subgroup of a cyclic group is cyclic.

3.1.2 Vector spaces

Definition. A set V of elements x,y, z, . . . is called a vector (or linear) space
over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under
addition, with identity element 0.

(b) the set is closed with respect to scalar multiplication and vector addition

a(x+ y) = ax+ ay , a, b ∈ F , x,y ∈ V
(a+ b)x = ax+ bx

a(bx) = (ab)x

1x = x , 0x = 0 .

Here the field F will be either R, the field of reals numbers, or C, the field of
complex numbers (quaternion and octonion fields are discussed in sect. 15.5).

Definition. n-dimensional complex vector space V consists of all n-multiplets
x = (x1, x2, . . . , xn), xi ∈ C. The two elements x, y are equal if xi = yi for all
0 ≤ i ≤ n. The vector addition identity element is 0 = (0, 0, · · · , 0).

Definition. A complex vector space V is an inner product space if with every
pair of elements x, y ∈ V there is associated a unique inner (or scalar) product
(x, y) ∈ C, such that

(x, y) = (y, x)∗

(ax, by) = a∗b(x, y) , a, b ∈ C

(z, ax+ by) = a(z, x) + b(z, y) ,
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3.1. PRELIMINARIES 17

where * denotes complex conjugation.
Without any noteworthy loss of generality we shall here define the scalar

product of two elements of V by

(x, y) =
n∑
j=1

x∗jyj . (3.1)

3.1.3 Algebra

Definition. A set of elements tα of a vector space T forms an algebra if, in
addition to the vector addition and scalar multiplication

(a) the set is closed with respect to multiplication T · T → T , so that for any
two elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =
∑
γ∈T
tαβ

γtγ . (3.2)

(b) the multiplication operation is bilinear

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ

The set of numbers tαβγ are called the structure constants of the algebra. They
form a matrix representation of the algebra

(tα)βγ = tαβγ (3.3)

whose dimension is the dimension of the algebra itself.
Depending on what further assumptions one makes on the multiplication,

one obtains different types of algebras. For example, if the multiplication is
associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)ca = (tα)ba(tβ)cb tα ∈ V ⊗ V̄ , (3.4)

and the Lie product

(tα · tβ)ca = (tα)ba(tβ)cb − (tα)bc(tβ)ab tα ∈ V ⊗ V̄ , (3.5)

which defines a Lie algebra.
As a plethora of vector spaces, indices and conjugations looms large in our

immediate future, it pays to streamline the notation now, by singling out one
vector space as “defining”, and replacing complex conjugation by raised indices.
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18 CHAPTER 3. INVARIANTS AND REDUCIBILITY

3.1.4 Defining space, tensors, representations

Definition. Let V be the defining n-dimensional complex vector space. Asso-
ciate with the defining n-dimensional complex vector space V a conjugate (or
dual) n-dimensional vector space V̄ = {x̄ | x̄∗ ∈ V } obtained by complex conju-
gation of elements x ∈ V . We shall denote the corresponding element of V̄ by
raising the index

xa = (xa)∗ ,

so the components of defining space vectors, resp. conjugate vectors, are distin-
guished by lower, resp. upper indices

x = (x1, x2, . . . , xn) , x ∈ V
x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (3.6)

Repeated index summation: Throughout this text the repeated indices are
always summed over

Gbaxb =
n∑
b=1

Gbaxb , (3.7)

unless explicitly stated otherwise.

Definition. Let G be a group of transformations acting linearly on V , with the
action of a group element g ∈ G on a vector x ∈ V given by a unitary [n×n]
matrix G

x′a = G
b
axb a, b = 1, 2, . . . , n . (3.8)

We shall refer to Gba as the defining representation of the group. The action of
g ∈ G on a vector q̄ ∈ V̄ is given by the conjugate representation G†

x′a = xb(G†)ab , (G†)ab ≡ (Gba)∗ . (3.9)

By defining the conjugate space V̄ by complex conjugation and inner product
(3.1), we have already chosen (without any loss of generality) δba as the invariant
tensor with the bilinear form (x, x) = xbxb. From this choice it follows that in
the applications considered here, the group G is always assumed unitary

(G†)caG
b
c = δ

b
a . (3.10)

Definition. A tensor x ∈ V p⊗ V̄ q is any object that transforms under the action
of g ∈ G as

x′
a1a2...aq

b1...bp
= Ga1a2...aq

b1...bp
,
dp...d1
cq ...c2c1 x

c1c2...cq
d1...dp

, (3.11)

where the V p ⊗ V̄ q tensor representation of g ∈ G is defined by

G
a1a2...ap

b1...bq
,
dq ...d1
cp...c2c1 ≡ (G†)a1c1 (G

†)a2c2 . . . (G
†)ap
cpG

d1
b1
. . . G

dq

bq
. (3.12)
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3.1. PRELIMINARIES 19

Tensors can be combined into other tensors by
(a) addition

zab...cd...e = αx
ab...c
d...e + βy

ab...c
d...e , α, β ∈ C , (3.13)

(b) product

zabcdefg = x
abc
e y

d
fg , (3.14)

(c) contraction: Setting an upper and lower index equal and summing over all of
its values yields a tensor z ∈ V p−1 ⊗ V̄ q−1 without these indices:

zbc...de...f = x
abc...d
e...af , zade = x

abc
e y

d
cb . (3.15)

A tensor x ∈ V p ⊗ V̄ q transforms linearly under the action of g, so it can be
considered a vector in the d = np+q dimensional vector space Ṽ . We can replace
the array of its indices by one collective index:

xα = x
a1a2...aq

b1...bp
. (3.16)

One could be more explicit and give a table like

x1 = x11...1
1...1 , x2 = x21...1

1...1 , . . . , xd = x
nn...n
n...n , (3.17)

but that is unnecessary, as we shall use the compact index notation only as a
shorthand.
Definition. Hermitian conjugation is effected by complex conjugation and index
transposition:

(h†)abcde ≡ (hedcba )
∗ . (3.18)

Complex conjugation interchanges upper and lower indices, as in (3.6); transpo-
sition reverses their order. A matrix is hermitian if its elements satisfy

(M †)ab =M
a
b . (3.19)

Definition. The tensor conjugate to xα has form

xα = xbp...b1aq...a2a1 . (3.20)

Combined, the above definitions lead to the hermitian conjugation rule for col-
lective indices: a collective index is raised or lowered by interchanging the upper
and lower indices and reversing their order:

α =
{
a1a2 . . . aq
b1 . . . bp

}
↔ α =

{
bp . . . b1
aq . . . a2a1

}
. (3.21)

This transposition convention will be motivated further by the diagrammatic
rules of sect. 3.6.
The tensor representation (3.12) can be treated as a [d× d] matrix

Gβα = G
a1a2...aq

b1...bp
,
dp...d1
cq...c2c1 , (3.22)

and the tensor transformation (3.11) takes the usual matrix form

x′α = G
β
αxβ . (3.23)
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20 CHAPTER 3. INVARIANTS AND REDUCIBILITY

3.2 Invariants

Definition. The vector q ∈ V is an invariant vector if for any transformation
g ∈ G

q = Gq . (3.24)

Definition. A tensor x ∈ V p ⊗ V̄ q is an invariant tensor if for any g ∈ G

x
a1a2...ap

b1...bq
= (G†)a1c1 (G

†)a2c2 . . . G
d1
b1
. . . G

dq

bq
x
c1c2...cp
d1...dq

. (3.25)

We can state this more compactly by using the notation of (3.22)

xα = Gβαxβ . (3.26)

Here we treat the tensor xa1a2...ap

b1...bq
as a vector in [d × d] dimensional space, d =

np+q.
If a bilinear form M(x̄, y) = xaM b

ayb is invariant for all g ∈ G, the matrix

M b
a = G

c
a(G

†)bdM
d
c (3.27)

is an invariant matrix . Multiplying with Geb and using the unitary condition
(3.10), we find that the invariant matrices commute with all transformations
g ∈ G:

[G,M ] = 0 . (3.28)

If we wish to treat a tensor as a matrix

Mβ
α =M

a1a2...aq

b1...bp
,
dp...d1
cq ...c2c1 , (3.29)

then the invariance condition (3.26) will takes the commutator form (3.28).

Definition. We shall refer to an invariant relation between p vectors in V and
q vectors in V̄ which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = habcdexbyas
erdzc , (3.30)

as an invariant in V q ⊗ V̄ p (repeated indices, as always, summed over). In this
example, the coefficients habcde are components of invariant tensor h ∈ V 3 ⊗ V̄ 2,
obeying the invariance condition (3.25).
Diagrammatic represention of tensors, such as

habcd =
a

b

d

c
(3.31)

makes it easier to distinguish different types of invariant tensors. We shall explain
in great detail our conventions for drawing tensors in sect. 3.6; sketching a few
simple examples should suffice for the time being.
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3.2. INVARIANTS 21

The standard example of a defining vector space is our three-dimensional
Euclidean space: V = V̄ is the space of all three-component real vectors (n = 3),
and examples of invariants are the length L(x, x) = δijxixj and the volume
V (x, y, z) = εijkxiyjzk. We draw the corresponding invariant tensors as

δij = i j , εijk =
i

k

j
. (3.32)

Definition. A composed invariant tensor can be written as a product and/or
contraction of invariant tensors.

Examples of composed invariant tensors are

δijεklm =
i

j k

m

l
, εijmδmnεnkl =

i

j

l

k
. (3.33)

The first example corresponds to a product of the two invariants L(x, y)V (z, r, s).
The second involves an index contraction; we can write this as V

(
x, y, ddz

)
V (z, r, s).

In order to proceed, we need to distinguish the “primitive” invariant tensors
from the infinity of composed invariants. We begin by defining a finite basis for
invariant tensors in V p ⊗ V̄ q:

Definition. A tree invariant can be represented diagrammatically as a product
of invariant tensors involving no loops of index contractions. We shall denote
by T = {t0, t1 . . . tr} a (maximal) set of r linearly independent tree invariants
tα ∈ V p ⊗ V̄ q. As any linear combination of tα can serve as a basis, we clearly
have a great deal of freedom in making informed choices for the basis tensors.

Example: Tensors (3.33) are tree invariants. The tensor

hijkl = εimsεjnmεkrnε�sr =
i

j

l

k
. (3.34)

is not a tree invariant, as it involves a loop.

Definition. An invariant tensor is called a primitive invariant tensor if it cannot
expressed as a combination of tree invariants composed from lower rank primitive
invariant tensors. Let P = {p1, p2, . . . pk} be the set of all primitives.
For example, the Kronecker delta and the Levi-Civita tensor (3.32) are the

primitive invariant tensors of our three-dimensional space. The loop contraction
(3.34) is not a primitive, because by the Levi-Civita completeness relation (5.32)
it reduces to a sum of tree contractions:

i

j

l

k
=
i

j

l

k
+
i

j

l

k
= δijδkl + δilδjk . (3.35)
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22 CHAPTER 3. INVARIANTS AND REDUCIBILITY

(the Levi-Civita tensor is discussed in sect. 5.4.)

Primitiveness assumption. Any invariant tensor h ∈ V p ⊗ V̄ q can be
expressed as a linear sum over the tree invariants T ∈ V q ⊗ V̄ p

h =
∑
T

hαtα . (3.36)

In contradistinction to arbitrary composite invariant tensors, the number of
tree invariants for a fixed number of external indices is finite. For example, given
the n = 3 dimensions primitives P = {δij , fijk}, any invariant tensor h ∈ V p
(here denoted by a blob) must be expressible as

birdTrack = A (3.37)

birdTrack = A

birdTrack = A +B + C +D + E + F

birdTrack = birdTrack+ birdTrack+ . . . (3.38)
... =

3.2.1 Algebra of invariants

Any invariant tensor of matrix form (3.29)

Mβ
α =M

a1a2...aq

b1...bp
,
dp...d1
cq ...c2c1

which maps V q ⊗ V̄ p → V q ⊗ V̄ p can be expanded in the basis (3.36). The basis
tα are themselves matrices in V q⊗ V̄ p → V q⊗ V̄ p, and the matrix product of two
basis elements is also an element of V q ⊗ V̄ p → V q ⊗ V̄ p and can be expanded in
the minimal basis:

tαtβ =
∑
γ∈T
(tα)βγtγ . (3.39)

As the number of tree invariants composed from the primitives is finite, un-
der matrix multiplication the bases tα form a finite algebra, with the coeffi-
cients (tα)βγ giving their multiplication table. The multiplication coefficients
(tα)βγ form a [r × r]-dimensional matrix representation of tα acting on the vec-
tor (e, t1, t2, · · · tr−1). Given a basis, we can evaluate the matrices eβγ , (t1)βγ ,
(t2)βγ , · · · (tr−1)βγ and their eigenvalues. For at least one of these matrices all
eigenvalues will be distinct (or we have failed to chose a minimal basis). The
projection operator technique of sect. 3.4 will enable us to exploit this fact to
decompose the V q ⊗ V̄ p space into r irreducible subspaces.
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3.3. INVARIANCE GROUPS 23

This can be said in another way; the choice of basis {e, t1, t2, · · · tr−1} is
arbitrary, the only requirement being that the basis elements are linearly inde-
pendent. Finding a (tα)βγ with all eigenvalues distinct is all we need to construct
an orthonormal basis {P0, P1, P2, · · ·Pr−1}, where the basis matrices Pi are the
projection operators, to be constructed below in sect. 3.4.

3.3 Invariance groups

So far we have defined invariant tensors as the tensors invariant under transfor-
mations of a given group. Now we proceed in the other direction: given a set of
tensors, what is the group of transformations that leaves them invariant?
Given a full set of primitives (3.30) P = {p1, p2, . . . , pk}, meaning that no

other primitives exist, we wish to determine all possible transformations that
preserve this gvien set of invariant relations.
Definition. An invariance group G is the set of all linear transformations (3.25)
which preserve the primitive invariant relations (and, by extension, all invariant
relations)

p1(x, ȳ) = p1(Gx, ȳG†)

p2(x, y, z, . . .) = p2(Gx,Gy,Gz . . .) , . . . (3.40)

Unitarity (3.10) guarantees that all contractions of primitive invariant tensors,
and hence all composed tensors h ∈ H are also invariant under action of G. As
G we consider is unitary, it follows from (3.10) that the list of primitives must
always include the Kronecker delta.

Example 1. If paqa is an invariant of G

p′aq′a = p
b(G†G)cbqc = p

aqa , (3.41)

then G is the full unitary group U(n) (invariance group of the complex norm
|x|2 = xbxaδab ), whose elements satisfy

G†G = 1 . (3.42)

Example 2. If we wish the z-direction to be invariant in our three-dimensional
space, q = (0, 0, 1) is an invariant vector (3.24), and the invariance group is O(2),
the group of all rotations in the x-y plane.

Remark 3.1 Which representation is “defining”?.

1. The defining space V need not carry the lowest dimensional represen-
tation of G; it is merely the space in terms of which we chose to define
the primitive invariants.
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24 CHAPTER 3. INVARIANTS AND REDUCIBILITY

2. We shall always assume that the Kronecker delta δba is one of the prim-
itive invariants, ie. that G is a unitary group whose elements satisfy
(3.42). This restriction to unitary transformations is not essential, but
it simplifies proofs of full reducibility. The results, however, apply as
well to the finite-dimensional representations of non-compact groups,
such as the Lorentz group SO(3, 1).

3.4 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such
that:

CMC† =




λ1 0
0 λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...
. . .



, λi �= λj . (3.43)

Here λi are the r distinct roots of the minimal characteristic polynomial
r∏
i=1

(M − λi1) = 0 . (3.44)

(the characteristic equations will be discussed in sect. 5.7.) In the matrix C(M −
λ21)C† the eigenvalues corresponding to λ2 are replaced by zeroes:



λ1 − λ2

λ1 − λ2

λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2

. . .



,

and so on, so the product over all factors (M −λ21)(M −λ31) . . . with exception
of the (M −λ11) factor has non-zero entries only in the subspace associated with
λ1:

C
∏
j �=1

(M − λj1)C† =
∏
j �=1

(λ1 − λj)




1 0 0
0 1 0
0 0 1

0

0

0
0
0
. . .



.
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3.5. FURTHER INVARIANTS 25

In this way we can associate with each distinct root λi a projection operator Pi

Pi =
∏
j �=i

M − λj1
λi − λj

, (3.45)

which is identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†




1
1
1

0
0
0
. . .



C . (3.46)

The matrices Pi are orthonormal

PiPj = δijPj , (no sum on j) , (3.47)

and satisfy the completeness relation

r∑
i=1

Pi = 1 . (3.48)

As tr (CPiC+) = trPi, the dimension of the ith subspace is given by

di = trPi . (3.49)

It follows from the characteristic equation (3.44) and the form of the projection
operator (3.45) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (3.50)

Hence any matrix polynomial f(M) takes the scalar value f(λi) on the Pi sub-
space

f(M)Pi = f(λi)Pi . (3.51)

This, of course, is the real reason why one wants to work with irreducible repre-
sentations: they render matrices and “operators” harmless c-numbers.

3.5 Further invariants

Suppose that there exist several linearly independent invariant [d× d] hermitian
matrices M1,M2, . . . and that we have used M1 to decompose the d-dimensional
vector space Ṽ = Σ ⊕ Vi. Can M2 be used to further decompose Vi? This
is the standard problem of quantum mechanics (simultaneous observables), and
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26 CHAPTER 3. INVARIANTS AND REDUCIBILITY

the answer is that further decomposition is possible if, and only if, the invariant
matrices commute,

[M1,M2] = 0 , (3.52)

or, equivalently, if all projection operators commute

PiPj = PjPi . (3.53)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M
(i)
2 = PiM2Pi , (no sum on i) .

That M (i)
2 commutes with M1 follows from the orthogonality of Pi:

[M (i)
2 ,M1] =

∑
j

λj [M
(i)
2 , Pj ] = 0 . (3.54)

Now the characteristic equation forM (i)
2 (if nontrivial) can be used to decompose

Vi subspace.
An invariant matrix M induces a decomposition only if its diagonalized form

(3.43) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix, and commutes trivially with all group elements. A representation
is said to be irreducible if all invariant matrices that can be constructed are
proportional to the unit matrix.
In particular, the primitiveness relation (3.37) is a statement that the defining

representation is assumed irreducible.
According to (3.28), an invariant matrix M commutes with group transfor-

mations [G,M ] = 0. Projection operators (3.45) constructed from M are poly-
nomials in M , so they also commute with all g ∈ G:

[G,Pi] = 0 , (3.55)

(remember that Pi are also invariant [d × d] matrices). Hence a [d × d] matrix
representation can be written as a direct sum of [di × di] matrix representations

G = 1G1 =
∑
i,j

PiGPj =
∑
i

PiGPi =
∑
i

Gi . (3.56)

In the diagonalized representation (3.46), the matrix G has a block diagonal
form:

CGC† =


G1 0 0
0 G2 0

0 0
. . .


 , G =

∑
i

CiGiCi . (3.57)
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3.6. BIRDTRACKS 27

Representation Gi acts only on the di dimensional subspace Vi consisting of vec-
tors Piq, q ∈ Ṽ . In this way an invariant [d × d] hermitian matrix M with r
distinct eigenvalues induces a decomposition of a d-dimensional vector space Ṽ
into a direct sum of di-dimensional vector subspaces Vi

Ṽ
M

→ V1 ⊕ V2 ⊕ . . .⊕ Vr . (3.58)

For more detailed discussion of recursive reduction, consult appendix A.

3.6 Birdtracks

We shall often find it convenient to represent aglomerations of invariant tensors
by “birdtracks”, a group-theoretical version of Feynman diagrams. Tensors will
be represented by “vertices”, and contractions by “propagators”.
Diagrammatic notation has several advantages over the tensor notation. Di-

agrams do not require dummy indices, so explicit labelling of such indices is
unnecessary. More to the point, for a human eye it is easier to identify topologi-
cally identical diagrams than to recognize equivalence between the corresponding
tensor expressions.
The main disadvantage of diagrammatic notation is lack of standardization,

especially in the case of Clebsch-Gordan coefficients. Many of the diagrammatic
notations [97, 98, 73] designed for atomic and nuclear spectroscopy, are compli-
cated by various phase conventions. In our applications, explicit constructions of
clebsches are superfluous, and we need no such conventions, confusing or other-
wise.
In the birdtrack notation, the Kronecker delta is a “propagator”:

δab = b a . (3.59)

For a real defining space there is no distinction between V and V̄ , or up and down
indices, and the lines do not carry arrows.
Any invariant tensor can be drawn as a generalized vertex:

xα = xabcde = . (3.60)

Whether the vertex is drawn as a box or a circle or a dot is matter of taste. The
orientation of propagators and vertices in the plane of the drawing is likewise
irrelevant. The only rules are

(1) Arrows point away from the upper indices and toward the lower indices; the
line flow is “downward”, from upper to lower indices:

hcdab =
a

b

d

c
. (3.61)
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28 CHAPTER 3. INVARIANTS AND REDUCIBILITY

(2) Diagrammatic notation must indicate which in (out) arrow corresponds to
the first upper (lower) index of the tensor (unless the tensor is cyclically
symmetric);

Reabcd = . (3.62)

(3) The indices are read in the counterclockwise order around the vertex:

xbcead = . (3.63)

(The upper and the lower indices are read separately in the counterclockwise
order; their relative ordering does not matter.)

In the examples of this section we index the external lines for reader’s conve-
nience, but indices can always be omitted. An internal line implies a summation
over corresponding indices, and for external lines the equivalent points on each
diagram represent the same index in all terms of a diagrammatic equation.
Hermitian conjugation (3.18) does two things:

(a) it exchanges the upper and the lower indices, ie. it reverses the directions
of the arrows

(b) it reverses the order of the indices, ie. it transposes a diagram into its
mirror image. For example, x†, the tensor conjugate to (3.63), is drawn as

xα = xedcba = (3.64)

and a contraction of tensors x† and y is drawn as

xαyα = x
bp...b1
aq ...a2a1y

a1a2...aq

b1...bp
= . (3.65)
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3.7 Clebsch-Gordan coefficients

Consider the product


0
0

1
1
1

0
0
0
. . .



C (3.66)

of the two terms in the diagonal representation of a projection operator (3.46).
This matrix has non-zero entries only in the di rows of subspace Vi. We collect
them in a [di × d] rectangular matrix (Ci)ασ , α = 1, 2, . . . d, σ = 1, 2, . . . di:

Ci =


 (Ci)11 . . . (Ci)d1

...
...

(Ci)ddi




︸ ︷︷ ︸

d

di . (3.67)

The index α in (Ci)ασ stands for all tensor indices associated with the d = n
p+q

dimensional tensor space V p ⊗ V̄ q. In the birdtrack notation these indices are
explicit:

(Ci)σ,
bp...b1
aq ...a2a1 = (3.68)

Such rectangular arrays are called Clebsch-Gordan coefficients (hereafter refered
to as “clebsches” for short). They are explicit mappings Ṽ → Vi. The conjugate
mapping Vi → Ṽ is provided by the product

C†




0
0

1
1
1

0
0
0
. . .




(3.69)

which defines the [d×di] rectangular matrix (Ci)σα, α = 1, 2, . . . d, σ = 1, 2, . . . di:

Ci =


 (C

i)11 . . . (Ci)di
1

...
...

(Ci)di
d




︸ ︷︷ ︸

di

d , (Ci)a1a2...aq

b1...bp
, σ = .(3.70)
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The two rectangular Clebsch-Gordan matrices Ci and Ci are related by hermitian
conjugation.
The tensors we have considered in sect. 3.6 transform as tensor products of the

defining representation (3.11). In general, tensors transform as tensor products of
various representations, with indices runnig over the corresponding representation
dimensions:

a1 = 1, 2, . . . , d1
a2 = 1, 2, . . . , d2

x
ap+1...ap+q
a1a2...ap where

...

ap+q = 1, 2, . . . , dp+q . (3.71)

The action of transformation g on the index ak is given by the [dk × dk] matrix
representation Gk.
The Clebsch-Gordan coefficients are notoriously index-overpopulated as they

require a representation label and a tensor index for each representation in the
tensor product. Diagrammatic notation alleviates this index plague in either of
two ways:

(i) one can indicate a representation label on each line:

C
aµaν
aλ , aσ = (3.72)

(an index, if written, is written at the end of a line; a representation label
is written above the line);

(ii) one can draw the propagators (Kronecker deltas) for different representa-
tions with different kinds of lines. For example, we shall usually draw the
adjoint representation with a thin line.

By the definition of clebsches (3.46), a λ-representation projection operator can
be written out in terms of Clebsch-Gordan matrices: CλCλ:

CλCλ = Pλ , (no sum on λ) (3.73)

(Cλ)a1a2...ap

b1...bq
, α (Cλ)α,

dq ...d1
cp...c2c1 = (Pλ)

a1a2...dp

b1...bq
,

dq ...d1
cp...c2c1

= . (3.74)

A specific choice of clebsches is quite arbitrary. All relevant properties of pro-
jection operators (orthonormality, completeness, dimensionality) are independent
of the explicit form of the diagonalization transformation C. Any set of Cλ is
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acceptable, as long as it satisfies the orthogonality and completeness conditions.
From (3.66) and (3.69) it follows that Cλ are orthonormal:

CλC
µ = δµλ1 .

(Cλ)β ,
a1a2...ap

b1...bq
(Cµ) bq...b1

ap...a2a1 ,
α = δαβ δ

µ
λ

= λ µ . (3.75)

Here 1 is the [dλ×dλ] unit matrix, and Cλ’s are multiplied as [dλ×d] rectangular
matrices.
The completeness relation (3.48)∑

λ

CλCλ = 1 , ([d× d] unit matrix) ,

∑
λ

(Cλ)a1a2...ap

b1...bq
, α(Cλ)α,

dq ...d1
cp...c2c1 = δa1c1 δ

a2
c2 . . . δ

dq

bq

∑
λ

= (3.76)

and the orthonormality of projection operators and clebsches

CλPµ = δµλC
λ ,

PλC
µ = δµλC

µ , (no sum on λ, µ) , (3.77)

follow immediately from (3.47) and (3.75).

3.8 Zero- and one-dimensional subspaces

If a projection operator projects onto a zero-dimensional subspace, it must vanish
identically

dλ = 0 ⇒ Pλ = = 0 . (3.78)

This follows from (3.46); dλ is the number of 1’s on the diagonal on the right-hand
side. For dλ = 0 the right-hand side vanishes. The general form of Pλ is

Pλ =
r∑

k=1

ckMk (3.79)

where Mk are the invariant matrices used in construction of the projector op-
erators, and ck are numerical coefficients. Vanishing of Pλ therefore implies a
relation among invariant matrices Mk.
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If a projection operator projects onto a one-dimensional subspace, its expres-
sion in terms of the Clebsch-Gordan coefficients (3.73) involves no summation,
so we can omit the intermediate line

di = 1 ⇒ Pi = ... ...ii = (Ci)a1a2...ap

b1...bq
(Ci)

dq ...d1
cp...c2c1 . (3.80)

For any subgroup of SU(n), the representations are unitary, with unit determi-
nant. On the one-dimensional spaces the group acts trivially, G = 1. Hence
if di = 1, the Clebsch-Gordan coefficient Ci in (3.80) is an invariant tensor in
V p ⊗ V̄ q.

3.9 Infinitesimal transformations

A unitary transformation G which is infinitesimally close to unity can be written
as

Gba = δ
b
a + iD

b
a , (3.81)

where D is a hermitian matrix with small elements, |Db
a| � 1. The action of

g ∈ G on the conjugate space is given by

(G†)ab = δ
a
b − iDa

b . (3.82)

D can be parametrized by N ≤ n2 real parameters. N , the maximal number of
independent parameters, is called the dimension of the group (also the dimension
of the Lie algebra, or the dimension of the adjoint representation).
We shall consider only infinitesimal transformations, of form G = 1 + iD,

|Da
b | � 1. We do not study the entire group of invariances, but only the trans-

formations (3.8) connected to the identity. For example, we shall not consider
invariances under coordinate reflections.
The generators of infinitesimal transformations (3.81) are hermitian matrices

and belong to the Da
b ∈ V ⊗ V̄ space. However, not any element of V ⊗ V̄

generates an allowed transformation; indeed, one of the main objectives of group
theory is to define the class of allowed transformations.
In sect. 3.4 we have described the general decomposition of a tensor space

into (ir)reducible subspaces. As a particular case, consider the decomposition of
V ⊗ V̄ . The corresponding projection operators satisfy the completeness relation
(3.76)

1 =
1
n
T + PA +

∑
λ�=A
Pλ

δadδ
c
b =

1
n
δab δ

c
d + (PA)

a
b ,
c
d +
∑
λ�=A
(Pλ)ab ,

c
d

=
1
n

+ +
∑
λ

���� ������

λ

. (3.83)
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If δji is the only primitive invariant tensor, then V ⊗ V̄ decomposes into 2 sub-
spaces, and there are no other irreducible representations. However, if there are
further primitive invariant tensors, V ⊗V̄ decomposes into more irreducible repre-
sentations, and therefore the sum over λ. Examples will abound in what follows.
The singlet projection operator T/n always figures in this expansion, as δab ,

c
d is

always one of the invariant matrices (see the example worked out in sect. 2.2).
Furthermore, the infinitesimal generators Da

b must belong to at least one of the
irreducible subspaces of V ⊗ V̄ .
This subspace is called the adjoint space, and its special role warrants intro-

duction of special notation. We shall refer to this vector space by letter A, in
distinction to the defining space V of (3.6). We shall denote its dimension by N ,
label its tensor indices by i, j, k . . ., denote the corresponding Kronecker delta by
a thin straight line

δij = i j , i, j = 1, 2, . . . , N , (3.84)

and the corresponding Clebsch-Gordan coefficients by

(CA)i, ab =
1√
a
(Ti)ab = i

a

b
a, b = 1, 2, . . . , n

i = 1, 2, . . . , N .

Matrices Ti are called the generators of infinitesimal transformations. Here a
is an (uninteresting) overall normalization fixed by the orthogonality condition
(3.75)

(Ti)ab (Tj)
b
a = tr (TiTj) = a δij

= a . (3.85)

The scale of Ti is not set, as any overall rescaling can be absorbed into the
normalization a. For our purposes it will be most convenient to use a = 1 as the
normalization convention. Other normalizations are commonplace. For example,
SU(2) Pauli matrices Ti = 1

2σi and SU(n) Gell-Mann [8] matrices Ti =
1
2λi are

conventionally normalized by fixing a = 1/2:

tr (TiTj) =
1
2
δij . (3.86)

The projector relation (3.73) expresses the adjoint representation projection op-
erators in terms of the generators:

(PA)ab ,
c
d =
1
a
(Ti)ab (Ti)

c
d =
1
a

. (3.87)

Clearly, the adjoint subspace is always included in the sum (3.83) (there must
exist some allowed infinitesimal generators Db

a, or otherwise there is no group to
describe), but how do we determine the corresponding projection operator?
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34 CHAPTER 3. INVARIANTS AND REDUCIBILITY

The adjoint projection operator is singled out by the requirement that the
group transformations do not affect the invariant quantities. (Remember, the
group is defined as the totality of all transformations that leave the invariants
invariant.) For every invariant tensor q, the infinitesimal group elements G = 1+
iD must satisfy the invariance condition (3.24). Parametrizing D as a projection
of an arbitrary hermitian matrix H ∈ V ⊗ V̄ into the adjoint space, D = PAH ∈
V ⊗ V̄ :

Da
b =
1
a
(Ti)ab εi , εi =

1
a
tr (TiH) (3.88)

we obtain the invariance condition which the generators must satisfy: they an-
nihilate invariant tensors

Tiq = 0 . (3.89)

To state the invariance condition for an arbitrary invariant tensor, we need
to define the generators in the tensor representations. By substituting G =
1+ iε · T +O(ε2) into (3.12) and keeping only the terms linear in ε, we find that
the generators of infinitesimal transformations for tensor representations act by
touching one index at a time:

(Ti)
a1a2...ap

b1...bq
,
dq ...d1
cp...c2c1 = (Ti)

a1
c1 δ

a2
c2 . . . δ

ap
cp δ

d1
b1
. . . δ

dq

bq

+δa1c1 (Ti)
a2
c2 . . . δ

ap
cp δ

d1
b1
. . . δ

dq

bq
+ . . .+ δa1c1 δ

a2
c2 . . . (Ti)

ap
cp δ

d1
b1
. . . δ

dq

bq

− δa1c1 δ
a2
c2 . . . δ

ap
cp (Ti)

d1
b1
. . . δ

dq

bq
− . . .− δa1c1 δ

a2
c2 . . . δ

ap
cp δ

d1
b1
. . . (Ti)

dq

bq
. (3.90)

(3.91)

(with a relative minus sign between lines flowing in opposite directions). In other
words, the Leibnitz rule obscured by a forest of indices.
Tensor representations of the generators decompose in the same way as the

group representations (3.57)

Ti =
∑
λ

CλT
(λ)
i Cλ . (3.92)

T
=
∑
λ

λ .
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3.9. INFINITESIMAL TRANSFORMATIONS 35

The invariance conditions take a particularly suggestive form in the diagram-
matic notation. (3.89) amounts to insertion of a generator into all external legs
of the diagram corresponding to the invariant tensor q:

0 = (3.93)

The insertions on the lines going into the diagram carry a minus sign relative to
the insertions on the outgoing lines.
Clebsch-Gordan coefficients are also invariant tensors. Multiplying both sides

of (3.57) with Cλ and using orthogonality (3.75), we obtain

CλG = GλCλ , (no sum on λ) . (3.94)

The Clebsch-Gordan matrix Cλ is a rectangular [dλ×d] matrix, hence g ∈ G acts
on it with a [dλ × dλ] representation from the left, and a [d × d] representation
from the right. (3.45) is the statement of invariance for rectangular matrices,
analogous to (3.27), the statement of invariance for square matrices:

Cλ = G†
λCλG ,

Cλ = G†CλGλ . (3.95)

The invariance condition for the Clebsch-Gordan coefficients is a special case
of (3.93), the invariance condition for any invariant tensor:

0 = −T (λ)
i Cλ + CλTi

0 = . (3.96)

The orthonormality condition (3.75) now yields the generators in λ representation
in terms of the defining representation generators

= . (3.97)
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36 CHAPTER 3. INVARIANTS AND REDUCIBILITY

Remark 3.2 The reality of the adjoint representation. For hermitian
generators the adjoint representation is real, and the upper and lower in-
dices need not be distinguished; the “propagator” needs no arrow. For
non-hermitian choices of generators, the adjoint representation is complex
(gluon lines carry arrows) but A and Ā are equivalent, as indices can be
raised an lowered by the Cartan-Killing form gij = Tr (T

†
i Tj). The Cartan

canonical basis D = εiHi+ εαEα+ ε∗αE−α is an example of a non-hermitian
choice. Here we shall always assume that Ti are chosen hermitian.

3.10 Lie algebra

As the simplest example of computation of the generators of infinitesimal trans-
formations acting on spaces other than the defining space, consider the adjoint
representation. Using (3.97) on the V ⊗ V̄ → A adjoint representation Clebsch-
Gordan coefficients (ie., generators Ti) we obtain

= − (3.98)

(Ti)jk = (Ti)ca(Tk)
b
c(Tj)

a
b − (Ti)ca(Tj)bc(Tk)ab .

Our convention is to always assume that the generators Ti have been chosen
hermitian. That means that εi in the expansion (3.88) are real, A is a real vector
space, there is no distinction between upper and lower indices, and there is no
need for arrows on the adjoint representation lines (3.84). However, the arrow
on the adjoint representation generator (3.98) is necessary to define correctly the
overall sign. If we interchange the two legs, the right-hand side changes sign

= − (3.99)

(the generators for real representations are always antisymmetric). This arrow
has no absolute meaning; its direction is defined by (3.98). Actually, as the
right-hand side of (3.98) is antisymmetric under interchange of any two legs, it is
convenient to replace the arrow in the vertex by a more symmetric symbol, such
as a dot:

= ≡ −

(Ti)jk ≡ −iCijk = −tr [Ti, Tj ]Tk , (3.100)

and replace the adjoint representation generators (Ti)jk by the fully antisymmet-
ric structure constants iCijk. The factor i ensures their reality (in the case of
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3.10. LIE ALGEBRA 37

hermitian generators Ti), and we keep track of the overall signs by always reading
indices counterclockwise around a vertex

− iCijk =
i

j
k

(3.101)

= − . (3.102)

As all other clebsches, the generators must satisfy the invariance conditions
(3.96):

0 = − + − .

Redrawing this a little and replacing the adjoint representation generators (3.100)
by the structure constants we find that the generators obey the Lie algebra com-
mutation relation

− =

TiTj − TjTi = iCijkTk . (3.103)

In other words, the Lie algebra is simply a statement that Ti, the generators
of invariance transformations, are themselves invariant tensors. The invariance
condition for structure constants Cijk is likewise

0 = + + .

Rewriting this with the dot-vertex (3.100) we obtain

− = . (3.104)

This is the Lie algebra commutator for the adjoint representation generators,
known as the Jacobi relation for the structure constants

CijmCmkl − CljmCmki = CimlCjkm . (3.105)

Hence the Jacobi relation is also an invariance statement, this time the statement
that the structure constants are invariant tensors.

Remark 3.3 Sign convention for Cijk. A word of caution about using
(3.103): vertex Cijk is an oriented vertex. If the arrows are reversed (ma-
trices Ti, Tj multiplied in reverse order), the right-hand side gets an overall
minus sign.
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38 CHAPTER 3. INVARIANTS AND REDUCIBILITY

3.11 Other forms of Lie algebra commutators

Note that in our calculations we never need explicit generators; we use instead
the projection operators for the adjoint representation. For representation λ they
have the form

(PA)ab ,
β
α =

b

β

α

a

a, b = 1, 2, . . . , n

α, β = 1, . . . , dλ . (3.106)

The invariance condition for a projection operator is

λ

i

λ λ
−

λ

i

λ λ
−

λ

i

λ
+

λ

i

λ
= 0 . (3.107)

Contracting with (Ti)ab and defining [dλ×dλ] matrices (T ab )
β
α ≡ (PA)ab ,

β
α we obtain

[T ab , T
c
d ] = (PA)

a
b ,
c
eT

e
d − T ce (PA)ab , ed

λ

b c da

λ λ
−

λ λ λ
=

λλ
−

λλ
. (3.108)

This is a common way of stating the Lie algebra conditions for the generators
in an arbitrary representation λ. For example, for U(n) the adjoint projection
operator is simply a unit matrix (any hermitian matrix is a generator of unitary
transformation, cf. chapter 8), and the right-hand side of (3.108) is given by

U(n), SU(n) : [T ab , T
c
d ] = δ

c
bT

a
d − T cb δad . (3.109)

Another example is given by the orthogonal groups. The generators of rota-
tions are antisymmetric matrices, and the adjoint projection operator antisym-
metrizes generator indices:

SO(n) : [Tab, Tcd] =
1
2

{
gacTbd − gadTbc
−gbcTad + gbdTac

}
. (3.110)

Apart from the normalization convention, these are the familiar Lorentz group
commutation relations (we shal return to this in chapter 9).

3.12 Irrelevancy of clebsches

As was emphasized in sect. 3.7, an explicit choice of clebsches is highly arbitrary;
it corresponds to a particular coordinatization of the dλ-dimensional subspace
Vλ. For computational purposes clebsches are largely irrelevant. Nothing that a
physicist wants to compute depends on an explicit coordinatization. For example,
in QCD the physically interesting objects are color singlets and all color indices
are summed over: one needs only an expression for the projection operators
(3.87), not for the Cλ’s separately.
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Again, a nice example is the Lie algebra generators Ti. Explicit matrices are
often constructed (Gell-Mann λ matrices, Cartan’s canonical generators); how-
ever, in any singlet they always appear summed over the adjoint representation
indices, as in (3.87). The summed combination of clebsches is just the gluon
projection operator, a very simple object compared with explicit Ti matrices (PA
is typically a combination of a few Kronecker deltas), and much simpler to use
in explicit evaluations. As we shall show by many examples, all representation
dimensions, casimirs, etc, are computable once the projection operators for the
representations involved are known. Explicit clebsches are superfluous from the
computational point of view; we use them chiefly to state general theorems, with-
out recourse to any explicit realizations.
However, if one has to compute non-invariant quantities, such as subgroup

embeddings, explicit clebsches might be very useful. Gell-Mann [8] invented λi
matrices in order to embed SU(2) of isospin into SU(3) of the eightfold way.
Cartan’s canonical form for generators, summarized by Dynkin labels of a repre-
sentation is a very powerful tool in the study of symmetry breaking chains [71].
The same can be achieved with decomposition by invariant matrices (a nonvanish-
ing expectation value for a direction in the defining space defines the little group
of transformations in the remaining directions), but the tensorial technology in
this context is still underdeveloped compared to the canonical methods.

printed April 14, 2000 ∼DasGroup/book/chapter/invar.tex 14apr2000



40 CHAPTER 3. INVARIANTS AND REDUCIBILITY

∼DasGroup/book/chapter/invar.tex 14apr2000 printed April 14, 2000



Chapter 4

Recouplings

4.1 Couplings and recouplings

Clebsches discussed in sect. 3.7 project a tensor in V p ⊗ V̄ q onto a subspace λ.
In practice one usually reduces a tensor step by step, decomposing a two-particle
state at each step. We denote the Clebsches for µ⊗ ν → λ by

, Pλ = . (4.1)

Here λ, µ, ν are representation labels, and the corresponding tensor indices are
suppressed. Furthermore, if µ and ν are irreducible representations, the same
clebsches can be used to project µ⊗ λ̄→ ν̄

Pν =
dν
dλ

, (4.2)

and ν ⊗ λ̄→ µ̄

Pµ =
dµ
dλ

. (4.3)

Here the normalization factors come from P 2 = P condition. In order to draw the
projection operators in a more symmetric way, we replace clebsches by 3-vertices:

≡ 1√
aλ

. (4.4)

In this definition one has to keep track of the ordering of the lines around the
vertex. If in some context the birdtracks look better with two legs interchanged,
one can use Yutsis’ (1962) notation

≡ . (4.5)
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42 CHAPTER 4. RECOUPLINGS

While all sensible clebsches are normalized by the orthonormality relation
(3.75), in practice no two authors ever use the same normalization for 3-vertices
(in other guises known as 3j symbols, Gell-Mann λ matrices, Cartan roots, Dirac
γ matrices, etc, etc). For this reason we shall usually not fix the normalization

= aλ
λ σ

, aλ =
dλ
, (4.6)

leaving the reader the option of substituting his favourite choice (such as a = 1
2

if the 3-vertex stands for Gell-Mann 1
2λi, etc).

To streamline the discussion we shall drop the arrows and most of the rep-
resentation labels in the remainder of this chapter - they can always easily be
reinstated.
The above three projection operators now take a more symmetric form:

Pλ =
1
aλ

Pµ =
1
aµ

Pν =
1
aν

. (4.7)

In terms of 3-vertices, the completeness relation (3.73) is

µ

ν
=
∑
λ

dλ
. (4.8)

Any tensor can be decomposed by successive applications of the completeness
relation:

=
∑
λ

1
aλ

=
∑
λ,µ

1
aλ

1
aµ

=
∑
λ,µ,ν

1
aλ

1
aµ

1
aν

. (4.9)

Hence, if we know clebsches for λ ⊗ µ → ν, we can also construct clebsches for
λ⊗µ⊗ν⊗ . . .→ ρ. However, there is no unique way of building up the clebsches;
the above state can be equally well reduced by a different coupling scheme

=
∑
λ,µ,ν

1
aλ

1
aµ

1
aν

. (4.10)
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Consider now a process in which a particle in the representation µ interacts
with a particle in the representation ν by exchanging a particle in the represen-
tation ω:

(4.11)

The final particles are in representations ρ and σ. To evaluate the contribution of
this exchange to the spectroscopic levels of the µ− ν particles system, we insert
the Clebsch-Gordan series

=
∑
λ

dλ dλ
. (4.12)

By assumption λ is irreducible, so we have a recoupling relation between the
exchanges in ‘s’ and ‘t channels’:

=
∑
λ

dλ . (4.13)

We shall refer to as 3j coefficients and as 6j coefficients, committing us
to no particular normalization convention.
In atomic physics it is customary to absorb into the three-vertex and

define a 3j symbol (Racah 1942, Wigner 1931, 1959)

(
λ µ ν
α β γ

)
= (−1)ω 1√ . (4.14)

Here α = 1, 2, . . . , dλ etc are indices, λ, µ, ν representation labels, and ω the phase
convention. Fixing a phase convention is a waste of time, as the phases cancel in
summed-over quantities. All the ugly square roots one remembers from quantum
mechanics come from sticking

√
into 3j symbols. The 6j symbols (Wigner

1959) are related to our 6j coefficients by

{
λ µ ν
ω ρ σ

}
=

(−1)ω√ (4.15)

The name 3n − j coefficient comes from atomic physics, where a recoupling in-
volves 3n angular momenta j1, j2, . . . , j3n.
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Skeletons Vertex Self-energy Total
insertions insertions number

1j 1
3j 1
6j 2

9j 5

12j 16

Table 4.1: Topologically distinct types of Wigner 3n− j coefficients.

Most of the textbook symmetries of and relations between 6j symbols are
obvious from looking at the corresponding diagrams; others follow quickly from
completeness relations.

If we know the necessary 6j’s, we can compute the level splittings due to
single particle exchanges. In the next section we shall show that a far stronger
claim can be made: given the 6j coefficients, we can compute all multiparticle
matrix element.

4.2 Wigner 3n − j coefficients

An arbitrary higher order contribution to a two-particle scattering process will
give a complicated matrix element. The corresponding energy levels, cross-
sections, etc, are expresssed in terms of scalars obtained by contracting all tensor
indices; diagrammatically they look like ‘vacuum bubbles’, with 3n internal lines.
The topologically distinct vacuum bubbles in low orders are given in table 4.1.

In group-theoretic literature, these diagrams are called 3n − j symbols, and
are studied in considerable detail. Fortunately, any 3n− j symbol which contains
as a sub-diagram a loop with, let us say, seven vertices

.
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Replace the dotted pair of vertices by the cross-channel sum (4.13):

=
∑
λ

dλ . (4.16)

Now the loop has six vertices. Repeating the replacement for the next pair of
vertices, we obtain a loop of length five:

=
∑
λ,µ

dλ dµ

(4.17)

Repeating this process we can eliminate the loop altogether, producing 5-vertex-
trees times bunches of 6j coefficients. In this way we have expressed the original
3n−j coefficients in terms of 3(n−1)−j coefficients and 6j coefficients. Repeating
the process for the 3(n−1)−j coefficients, we eventually arrive at the result that

(3n− j) =
∑(

products of
)
. (4.18)

4.3 Wigner-Eckart theorem

For concreteness, consider an arbitrary invariant tensor with four indices:

T = , (4.19)

where µ, ν, ρ and ω are representation labels, and indices and line arrows are
suppressed. Now insert repeatedly the completeness relation (4.8) to obtain

=
∑
α

1
aα

=
∑
α,β

1
aαaβ

=
∑
α

1
a2α

1
dα

(4.20)

In the last line we have used the orthonormality of projection operators - as in
(4.13) or (4.23).
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In this way any invariant tensor can be reduced to a sum over clebsches
(‘kinematics’) weighted by ‘reduced matrix elements’:

< T >α= (4.21)

This theorem has many names, depending on how the indices are grouped. If T
is a vector, then only the 1-dimensional representations (singlets) contribute

Ta =
singlets∑

λ

(4.22)

If T is a matrix, and the representations α, µ are irreducible, the theorem is
called Schur’s Lemma (for an irreducible representation an invariant matrix is
either zero, or proportional to the unit matrix):

T
bµ
aλ = =

dµ
δλµ (4.23)

If T is an ‘invariant tensor operator’, then the theorem is called the Wigner (1931,
1959) - Eckart (1930) theorem:

(Ti)ba = =
∑
ρ

dρ

= (4.24)

(assuming that µ appears only once in λ⊗µ Kronecker product). If T has many
indices, as in our original example (4.19), the theorem is ascribed to Yutsis,
Levinson and Vanagas (1962). The content of all these theorems is that they
reduce spectroscopic calculations to evaluation of ‘vacuum bubbles’ or ‘reduced
matrix elements’ (4.21).
The rectangular matrices (Cλ)ασ from (3.24) do not look very much like the

clebsches from the quantum mechanics textbooks; neither does the Wigner-Eckart
theorem in its birdtrack version (4.22). The difference is merely a difference of
notation. In the bra-ket formalism, a clebsch for λ1 ⊗ λ2 → λ̃ is written as

=< λ1λ2λm|λ1m1λ2m2 > . (4.25)
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Representing the [dλ× dλ] representation of a group element g diagrammatically
by a black triangle

Dλ
m,m, (g) = m′ (4.26)

we can write the Clebsch-Gordan series (3.46) as

=
∑
λ

Dλ1
m1m′

1
(g)Dλ2

m2m′
2
(g) =

∑
λ̃,m̃,m̃1

< λ1m1λ2m2|λ1λ2λ̃m̃ > D
λ̃
m̃m̃1(g) < λ1λ2λ̃m̃1|λ1m

′
1λ2m

′
2 > .

An ‘invariant tensor operator’ can be written as

< λ2m2|T λm|λ1m1 >= (4.27)

In the bra-ket formalism, the Wigner-Eckart theorem (4.24) is written as

< λ2m2|T λm|λ1m1 >=< λλ1λ2m2|λmλ1m1 > T (λ, λ1λ2) , (4.28)

where the reduced matrix element is given by

T (λ, λ1λ2) =
1
dλ2

∑
n1,n2,n

< λnλ1n1|λλ1λ2n2 >< λ2n2|T λn |λ1n1 >

=
1
dλ2

(4.29)

We do not find the bra-ket formalism convenient for the group-theoretic calcula-
tions that will be discussed here.
There is natural hierarchy to invariance groups that can perhaps already be

grasped at this stage. Suppose that we have constructed the invariance group G1

which preserves primitives (17.3). Adding a new primitive, let us say a quartic
invariant, means that we have imposed a new constraint; only those transfor-
mations of G1 which also preserve the additional primitive constitute G2, the
invariance group of , , . Hence G2 is a subgroup of G1, G2 ⊆ G1. Suppose
now that you think that the primitiveness assumption is too strong, and that
some quartic invariant, let us say (3.34), cannot be reduced to a sum of tree
invariants (3.38), ie. it is of form

= + (rest of (3.38))

where is a new primitive, not included in the original list of primitives. By
the above argument, G2 ⊆ G1. If G1 does not exist (the invariant relations are
so stringent that there is no space on which they can be realized)
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Chapter 5

Permutations

The simplest example of invariant tensors are products of Kronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the
symmetric group Sp, the group of permutations of p objects, enters into the theory
of tensor representations. In this chapter, we introduce birdtracks notation for
permutations, symmetrizations and antisymmetrizations and collect a few results
which will be useful later on. These are the (anti)symmetrization expansion
formulas (5.11) and (5.20), Levi-Civita tensor relations (5.32) and (5.34), the
characteristic equations (5.54) and the invariance conditions (5.58) and (5.61).

5.1 Permutations in birdtracks

Operation of permuting tensor indices is a linear operation, and we can represent
it by a [d× d] matrix:

σβα = σ
a1a2...aq

b1...bp
,
dp...d1
cq...c2c1 = δ (5.1)

where (. . .)σ stands for the desired permutation of indices. As the covariant and
contravariant indices have to be permuted separately, it is sufficient to consider
permutations of purely covariant tensors.
For two-index tensors, there are two permutations

identity: 1ab,cd= δbaδ
c
b =

colour flip: σ(12)ab,
cd= δcaδ

d
b = (5.2)

For three-index tensors, there are six permutations

1a1a2a3 ,
b3b2b1 = δb1a1δ

b2
a2δ

b3
a3 = ������

������

������

σ(12)a1a2a3 ,
b3b2b1 = δb2a1δ

b1
a2δ

b3
a3 =

��
��
��
��

���
���
���
�������

σ(23) =
����

������
����

σ(13) = ��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��
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σ(123) =
���
���
���
���
����
���
���
���

���
���
���

σ(132) =
������

����
���
���
���

���
���
���

(5.3)

Subscripts refer to the standard cycle notation. (In the above, and for the re-
mainder of this chapter, we shall usually omit the arrows on the Kronecker delta
lines.)

5.2 Symmetrization

The symmetric sum of all permutations

Sa1a2...ap ,
bp...b2b1 =

1
p!

{
δb1a1δ

b2
a2 . . . δ

bp
ap + δ

b1
a2δ

b2
a1 . . . δ

bp
ap + . . .

}
S = p ...

=
1
p!

{

...p +

...p +

...p + . . .
}

(5.4)

yields the symmetrization operator S. In birdtrack notation, a white bar drawn
across p lines will always denote symmetrization of the lines crossed. Factor 1/p!
has been introduced in order that S satisfies the projection operator normalization

S2 = S

...... ...

=

... ...

. (5.5)

A subset of indices a1, a2, . . . aq, q < p can be symmetrized by symmetrization
matrix S12...q

(S12...q)a1a2...aq ...ap ,
bp...bq ...b2b1 = (5.6)

1
q!

{
δb1a1δ

b2
a2 . . . δ

bq
aq + δb1a2δ

b2
a1 . . . δ

bq
aq + . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q =

...

1
2

q

...
...

. (5.7)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q = S

...

...

... =

... ...

. (5.8)

Any permutation has eigenvalue 1 on the symmetric tensor space:

σS = S

... ...

=

... ...

. (5.9)

Diagrammatically this means that legs can be crossed and un-crossed at will.
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The definition (5.4) of the symmetrization operator as the sum of all p! per-
mutations is inconvenient for explicit calculations - a recursive definition is more
useful:

Sa1a2...ap ,
bp...b2b1 =

1
p

{
δb1a1Sa2...ap ,

bp...b2 +δb1a2Sa1a3...ap ,
bp...b2 + . . .

}
S =

1
p

(
1 + σ(21) + σ(321) + . . .+ σ(p...321)

)
S23...p

p ...
=
1
p

{

... ... + ... ... + ...... + . . .
}
, (5.10)

which involves only p terms. This equation says that if we start with the first
index, we end up either with the first index, or the second index, and so on. The
remaining indices are fully symmetric. Multiplying by S23 . . . p from the left, we
obtain an even more compact recursion relation with two terms only:

p ...

=
1
p

(
p-1 ... + (p− 1) ...p-1 ...

)
. (5.11)

As a simple application, consider computation of a contraction of a single pair of
indices:

-1
p-2
p

...

1

...

=
1
p

{
......

+ (p− 1) ......

}

=
n+ p− 1
p

......

Sapap−1...a1 ,
b1...bp−1ap =

n+ p− 1
p

Sap−1...a1 ,
b1...bp−1 . (5.12)

For a contraction in (p− k) pairs of indices we have

k ......

...
p

1
=
(n+ p− 1)!k!
p!(n+ k − 1)!

k

1

... ... (5.13)

The trace of the symmetrization operator yields the number of independent com-
ponents of fully symmetric tensors:

dS = tr ... =
n+ p− 1
p

...

=
(n+ p− 1)!
p!(n− 1)! . (5.14)

For example, for two-index symmetric tensors

dS =
n(n+ 1)
2

. (5.15)
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5.3 Antisymmetrization

The alternating sum of all permutations

Aa1a2...ap ,
bp...b2b1 =

1
p!

{
δb1a1δ

b2
a2 . . . δap ,

bp −δb1a2δ
b2
a1 . . . δ

bp
ap + . . .

}
A = p ...

=
1
p!

{

...p −

...p +

...p − . . .
}

(5.16)

yields the antisymmetrization projection operator A. In birdtrack notation, an-
tisymmetrization of p lines will always be denoted by a black bar drawn across
the lines. As in the previous section

A2 = A

...... ...

=
... ...

...

...

... =

... ...

(5.17)

and in addition

SA = 0

...... ...

= 0

......

= ...... ... = 0. (5.18)

A transposition has eigenvalue −1 on the antisymmetric tensor space

σ(i,i+1)A = −A

... ...

= −

... ...

. (5.19)

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of −1 for a transposition of any two neighbouring legs.
As in the case of symmetrization operators, the recursive definition is often

computationally convenient

p ...

=
1
p

{

...... − ... ... + ...... − . . .
}

=
1
p

{
p-1 ... − (p− 1) ...p-1 ...

}
. (5.20)

This is useful for computing contractions such as

-1
p-2
p

...

1

...

=
n− p+ 1
p

......

A
b1...bp−1a
aap−1...a1 =

n− p+ 1
p

A
b1...bp−1
ap−1...a1 . (5.21)
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5.4. LEVI-CIVITA TENSOR 53

The number of independent components of fully antisymmetric tensors is given
by

dA = trA = ... =
n− p+ 1
p

n− p+ 2
p− 1 . . .

n

1

=
n!

p!(n− p)!n ≥ p

= 0 n ≤ p . (5.22)

For example, for rank-two antisymmetric tensors the number of independent com-
ponents is

dA =
n(n− 1)
2

. (5.23)

Tracing (p− k) pairs of indices yields

k ......

...

p

1
=
k!(n− k)a5.23.b8
p!(n− p)!

k

1

... ... (5.24)

The antisymmetrization tensor Abp...b2b1a1a2... has non-vanishing components only if all
lower (or upper) indices differ from each other. If the defining dimension is smaller
than the number of indices, the tensor A has no non-vanishing components

1

p

2 ... ... = 0 if p > n . (5.25)

This identity implies that for p > n, not all combinations of p Kronecker deltas
are linearly independent. A typical relation is the p = n+ 1 case

0 =
+1n1

...

...

2

=
...

...

−
...

...

+
...

...

− . . . . (5.26)

for example, for n = 2 we have

n = 2; 0 =
e

b

d

a c

f

− − + + −

0 = δfaδ
e
bδ
d
c − δfaδecδdb − δ

f
b δ

e
aδ
d
c + δ

f
b δ

e
cδ
d
a + δ

f
c δ

e
aδ
d
b − δfc δebδda . (5.27)

5.4 Levi-Civita tensor

An antisymmetric tensor with n indices in defining dimension n has only one
independent component (by (5.22) dn = 1). The clebsches (3.72) are in this case
proportional to the Levi-Civita tensor

(CA)
an...a2a1
1 = Cεan...a2a1 = 2

a1

an

a

...

(CA)a1a2...an
,1 = Cεa1a2...an = 2

a1

an

a

... (5.28)
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54 CHAPTER 5. PERMUTATIONS

with ε12...n = ε12...n = 1. This diagrammatic notation for the Levi-Civita tensor
was introduced by R. Penrose [1]. The normalization factors C are physically
irrelevant1 they adjust the phase and the overall normalization in order that
the Levi-Civita tensors satisfy the projection operator (3.73) and orthonormality
(3.75) conditions:

1
N !
εb1b2...bnε

a1a2...an = Ab1b2...bn ,
an...a2a1

...... = ...... (5.32)

1
N !
εa1a2...anε

a1a2...an = δ1,1 = 1

... = 1 (5.33)

Given n dimensions we cannot label more than n indices, so Levi-Civita tensors
satisfy

0 =
+1n3

...

...

1 2

(5.34)

For example, for two colours

n = 2 : 0 = − +

0 = δdaεbc − δdb εac + δdc εab . (5.35)

This is actually the same as the completeness relation (5.32), as can be seen by
contracting (5.35) with εcd and using

n = 2 : = = 1/2

εacε
bc = δba . (5.36)

1With our conventions

C =
in(n − 1)/2√

n!
. (5.29)

The phase factor arises from the hermiticity condition (??) for clebsches (remember that indices
are always read in the counterclockwise order around a diagram)(

2

a1

an

a

...

)∗
= 2

a1

an

a

...

i−φεa1a2...an = i−φεan...a2a1 . (5.30)

Transposing the indices

εa1a2...an = −εa2a1...an = . . . = (−1)n(n−1)/2εan...a2a1 (5.31)

yields φ = n(n − 1)/2. The factor (n!)1/2 is needed for the projection operator normalization
(??)
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This relation is one of a series of relations obtained by contracting indices in the
completeness relation (5.32) and substituting (5.24):

εan...ak+1bk...b1ε
an...Ak+1ak...a1 = (n− k)!k!Abk...b1 ,a1...ak

...

...

...

=
k!(n− l)!
n!

...... (5.37)

Such identities are familiar from relativistic calculations (n = 4):

εabcdε
agfe = δgfebcd

εabcdε
abfe = 2δfecd

εabcdε
abce = 6δed

εabcdε
abcd = 24 (5.38)

where the generalized Kronecker delta is defined by

1
p!
δ
b1b2...bp
a1a2...ap = Aa1a2...ap ,

bp...b2b1 . (5.39)

5.5 Determinants

Consider a [np×np] matrix Mβ
α defined by a direct product of [n × n] matrices

M b
a

Mβ
α = Ma1a2...ap ,

bp...a2a1 =M
b1M

b2
a2
...M

bp
ap

a1

M = ...... M = ... ... , (5.40)

where

M b
a =

ba . (5.41)

The trace of the antisymmetric projection of Mβ
α is given by

tr pAM = Aabc...d,
d′...c′b′a′Ma

a′M
b
b1 . . .M

d
d′

= ...
...

. (5.42)

The subscript p on tr p(. . .) distinguishes the traces on [np×np] matrices Mβ
α

from the [n × n] matrix trace trM . To derive a recursive evaluation rule for
tr pAM use (5.20) to obtain

... =
1
p


 ... − (p− 1) ...


 (5.43)
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Iteration yields

...

=
p-1...

−
p-2

...

+ . . .±
...

∓
pM

... } (5.44)

Contracting with M b
a we obtain

...

...

=

...

... −
...

... . . .− (−1)p ...

p
k=1(−1)

k−1 (tr p−kAM) trMk . (5.45)

This formula enables us to compute recursively all tr pAM as polynomials in
traces of powers of M:

tr 0AM = 1 , (5.46)

tr 1AM = = trM

=
1
2
(

−
)
,

tr 2AM =
1
2
{
(trM)2 − trM2

}
, (5.47)

=
1
3

{
− +

}

tr 3AM =
1
3!
{
(trM)3 − 3(trM)(trM2) + 2trM3

}
, (5.48)

=
1
4


 − + −




tr 4AM =
1
4
{
(trM)4 − 6(trM)2trM2

+3(trM2)2 + 8trM3trM − 6trM4
}
. (5.49)

For p = n (M b
a are [n×n] matrices) the antisymmetrized trace is the determinant

detM = tr nAM = Aa1a2...an ,
bn...b2b1Ma1

b1
Ma2

b2
. . .Man

bn
. (5.50)

The coefficients in the above expansions are simple combinatoric numbers. A
general term for (trM �1)α1(trM �2)αs , with α1 loops of length ;1, α2 loops of
length ;2 and so on, is divided by the number of ways in which this pattern may
be obtained 2:

;α11 ;
α2
2 . . . ;

αs
s α1!α2! . . . αs! . (5.51)

2A.D. Kennedy, unpublished
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5.6 Characteristic equations

We have noted that the dimension of the antisymmetric tensor space is zero in
n < p. This is rather obvious; antisymmetrization allows each label to be used at
most once, and it is impossible to label more legs than there are labels. In terms
of the antisymmetrization operator this is given by the identity

A = 0 if p > n . (5.52)

This trivial identity has an important consequence: it guarantees that any [n×n]
matrix satisfies a characteristic (or Hamilton-Cayley) equation. Take p = n + 1
and contract with M b

1n index pairs of A:

Aca1a2...an ,
bn...b2b1dMa1

b1
Ma2

b2
. . .Man

bn
= 0

ac

... = 0 . (5.53)

We have already expanded this in (5.44). For p = n+1 we obtain the character-
istic equation

0 =
n∑
k=0

(−1)k(tr n−kAM)Mk ,

0 = Mn − (trM)Mn−1 +
(
tr 2Mn−2 − . . .+ (−1)ndetM

)
1 . (5.54)

5.7 Fully (anti)symmetric tensors

As we shall often use fully symmetric and antisymmetric tensors, it is conve-
nient to introduce special birdtrack symbols for them. We shall denote the fully
symmetric tensors by small circles

dabc...f = . ..

b c fa ...

. (5.55)

A symmetric tensor dabc...d = dbac...d = dacb...d = . . . satisfies

Sd = d
.

...

..

=
.

...

..

. (5.56)

If this tensor is also an invariant tensor, the invariance condition (??) can be
written as

0 = + +

= + +

= p (p = number of indices) . (5.57)
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Hence the invariance condition for symmetric tensors is

0 = .

...

..
. (5.58)

The fully antisymmetric tensors with odd numbers of legs will be denoted by
black dots

fabc...d = . ..

a dcb

. (5.59)

If the number of legs is even, an antisymmetric tensor is anticyclic

fabc...d = −fbc...da , (5.60)

and the birdtrack notation must distinguish the first leg. A black dot is inade-
quate for the purpose. A bar, as for the Levi-Civita tensor (5.28), or a semicircle
or similar notation fixes the problem.
For antisymmetric tensors, the invariance condition can be stated compactly

as

0 = .

...

..
. (5.61)

5.8 Young tableaux, Dynkin labels

It is standard to
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Chapter 6

Casimir operators

The construction of invariance groups developed elsewhere in this monograph is
self-contained, and none of the material covered in this chapter is necessary for
understanding the remainder of the report. We have argued in sect. 4.2 that all
relevant group-theoretic numbers are given by vacuum bubbles (reduced matrix
elements, 3n− j coefficients, etc), and we have described the algorithms for their
evaluation. That is all that is really needed in applications.
However, one often wants to cross-check one’s calculation against the existing

literature. In this chapter we discuss why and how one introduces casimirs (or
Dynkin indices), we construct independent Casimir operators for the classical
groups, and finally we compile values of a few frequently used casimirs.
Our approach emphasizes the role of primitive invariants in constructing rep-

resentations of Lie groups. Given a list of primitives, we present a systematic
algorithm for constructing invariant matrices Mi and the associated projection
operators (3.45).
In the canonical, Cartan-Killing approach one faces a somewhat different

problem. Instead of the primitives, one is given the generators Ti explicitly, and
no other invariants. Hence the invariant matrices Mi can be constructed only
from contractions of generators; typical examples are matrices

M2 = birdTrack, ,M4 = birdTrack, . . . (6.1)

where λ, µ could be any representations, reducible or irreducible. Such invariants
are called Casimir operators.
What is a minimal set of Casimir operators, sufficient to reduce any repre-

sentation to its irreducible subspaces? (Such bases can be useful, as the corre-
sponding r Casimir operators label uniquely each irreducible representation by
their eigenvalues λ1, λ2, . . . λr).
The invariance condition for any invariant matrix (3.28) is

0 = [Ti,M ] = birdTrack− birdTrack (6.2)

so all Casimir operators commute

M2M4 = birdTrack = birdTrack =M4M2 (6.3)
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and, according to sect. 3.5, can be used to simultaneously decompose the rep-
resentation µ. If M1,M2 . . . have been used in the construction of projection
operators (3.45), any matrix polynomial f(M1,M2 . . .) takes value f(λ1, λ2, . . .)
on the irreducible subspace projected by Pi, so polynomials induce no further de-
compositions. Hence it is sufficient to determine the finite number of Mi’s which
form a polynomial basis for all Casimir operators (6.1). Furthermore, as we show
in the next section, it is sufficient to restrict the consideration to the symmetrized
casimirs. This observation enables us to explicitly construct in sect. 6.2 a set of
independent casimirs for each classical group in sect. 6.2 . Exceptional groups
are harder.

6.1 Casimirs and Lie algebra

6.2 Independent casimirs

6.3 Casimir operators

Most physicists would not refer to trXk as a casimir. Casimir’s (1931) quadratic
operator and its generalizations (Racah 1950) are [dµ × dµ] matrices

6.4 Dynkin indices

As we have seen so far, there are many ways of defining casimirs; in practice it
is usually quicker to directly evaluate a given birdtrack diagram than to relate
it to standard casimirs. Still, it is good to have an established convention, if
for no other reason than to be able to cross-check one’s calculation against the
tabulations available in the literature.

6.5 Quadratic, cubic casimirs

As the low-order Casimir operators appear so often in physics, it is useful to list
them and their relations.

6.6 Quartic casimirs

6.7 Sundry relations between quartic casimirs

6.8 Identically vanishing tensors
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6.9. DYNKIN LABELS 61

6.9 Dynkin labels

It is standard to identify a representation of a simple group of rank r by its
Dynkin labels, a set of r integers (a1a2 . . . ar) assigned to the simple roots of the
group by the Dynkin diagrams. The Dynkin diagrams, table 2.1, are the most
concise summary of the Cartan-Killing construction of the semi-simple Lie Alge-
bras. We list them here only to facilitate the identification of the representations,
and do not attempt to derive or explain them. Dynkin’s canonical construction
is described in Slansky’s (1981) review. In this report we develop only the ten-
sor techniques for constructing representations. However, in order to help the
reader connect the two approaches, we will state the correspondence between
the tensor representations (identified by the Young tableaux) and the canonical
representations (identified by the Dynkin labels) for each group separately, in the
appropriate chapters.
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Chapter 7

Group integrals

In this chapter we discuss evaluation of group-theoretic integrals of form∫
dgGbaG

d
c . . . G

e
fG

g
h (7.1)

where Gba is the [n×n] defining matrix representation of g ∈ Gc and the integra-
tion is over the entire range of g. As always, we assume that Gc is a compact Lie
group, and Gba is unitary.
The integral (7.1) is defined by two rules:
1. As the overall normalization is rarely of interest in calculation of physically

interesting group-averaged quantities, we normalize the group volume to 1:∫
dg = 1 (7.2)

2. How do we define
∫
dgGba ? The action of g ∈ Gc is to rotate a vector xa

into x1
a = G

a
a
bxb

The averaging smears x in all directions, hence the second integration rule∫
dgGba = 0, Gisanon − trivialrepresentationofg (7.3)

simply states that the average of a vector is zero.
A representation is trivial if G = 1 for all colour rotations g. In this case no

averaging is taking place, and the first integration rule (7.2) applies.
What happens if we average a pair of vectors x, y? There is no reason why a

pair should average to zero; for example, we know that |x|2 =
∑

a xax
∗
a = xax

a

is invariant (we are considering only unitary representations), so it cannot have
a vanishing average. Therefore, in general∫

dgGbaG
c
d �= 0 . (7.4)

To get a feeling for what the right-hand side looks like, let us work out a few
examples
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7.1 Group integrals for arbitrary representations

Let Gba be the defining [nxn] matrix representation of SU(n). The defining rep-
resentation is non-trivial, so it averages to zero by (7.3). The first non-vanishing
average is the integral over G†. G† is the matrix representation of the action of
g on the conjugate vector space, which we write as (3.4)

Gab = (G
†)ab . (7.5)

7.2 Characters

Physics calculations (such as lattice gauge theories) often involve group invariant
quantities formed by contracting G with invariant tensors. Such invariants are of
the form tr (hG) = Ha

bG
b
a, where h stands for any invariant tensor. The trace of

an irreducible [d × d] matrix representation λ of g is called the character of the
representation:

χλ(g) = tr λG = Gaa. (7.6)

The character of the conjugate representation is

χλ(g) = χλ(g)∗ = trG† = (G†)aa. (7.7)

Contracting (??) with two arbitrary invariant [d × d] matrices had and (f †)cb we
obtain the character orthonormality relation∫

dgχλ(hg)χµ(gf) = δµλ
1
dλ
χλ(hg†)∫

dgbirdTrack =
1
dλ

birdTrack

(
λ, µirreducible
representations

)
(7.8)

The character orthonormality tells us that if two group variant quantities share a
GG† pair, the group averaging sews them into a single group invariant quantity.
The replacement of Gba by the trace χλ(h

†g) does not mean that any of the tensor
index structure is lost; Gba can be recovered by differentiating

Gba =
d

dhb
χλ(h†g) . (7.9)

The birtracks and the characters are two equivalent notations for evaluating group
integrals.

7.3 Examples of group integrals
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Chapter 8

Unitary groups

(P. Cvitanović, H. Elvang, and A. D. Kennedy)

U(n) is the group of all transformations which leave the norm of a complex
vector qq = δab q

bqa invariant. For U(n) there are no other invariant tensors
beyond those constructed of products of Kronecker deltas. They can be used to
decompose the tensor representations of U(n). For purely covariant or contravari-
ant tensors, the symmetric group can be used to construct the Young projection
operators. In sects. 8.1–8.2 we show how to do this for 2- and 3-index tensors
by constructing the appropriate characteristic equations. For tensors with more
indices it is easier to construct the Young projection operators directly from the
Young tableaux. We use the projection operators so constructed to evaluate
characters and 3-j coefficients of U(n).
For mixed tensors reduction also involves index contractions and the symmet-

ric group methods alone do not suffice. In sects. 8.8–8.10 the mixed U(n) tensors
are decomposed by the projection operator techniques introduced in chapter 3.

8.1 Two-index tensors

Consider 2-index tensors q(1) ⊗ q(2) ∈ V 2. According to (5.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the color flip (5.2)

σ = . (8.1)

The color flip satisfies

σ2 = = 1 ,

(σ + 1)(σ − 1) = 0 . (8.2)

Hence the roots are λ1 = 1, λ2 = −1, and the corresponding projection operators
(??) are

P1 =
σ − (−1)1
1− (−1) =

1
2
(1+ σ) =

1
2
(

+
)
, (8.3)
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P2 =
σ − 1
−1− 1 =

1
2
(1 − σ) = 1

2
(

−
)
. (8.4)

We recognize the symmetrization, antisymmetrization operators (5.4), (5.16);
P1 = S, P2 = A, with subspace dimensions d = n(n + 1)/2, d2 = n(n − 1)/2. In
other words, under general linear transformations the symmetric and the anti-
symmetric parts of a tensor xab transform separately:

x = Sx+Ax ,

xab =
1
2
(xab + xba) +

1
2
(xab − xba)

= + (8.5)

The Dynkin indices for the two representations follow by (??) from 6j′s:

birdTrack =
1
2
birdTrack =

N

2

;1 =
2;
n

· d1 +
2;
N

· N
2

= ;(n+ 2) (8.6)

(The defining representation Dynkin index ;−1 = CA = 2n was computed in
sect. ??). The result is

; =
n+ 2
2n

, ;2 =
n− 2
2n

(8.7)

8.2 Three-index tensors

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and the antisymmetric.
The results of this section are summarized in table 8.2. We mix the third index
into the symmetric 2-index subspace using the invariant matrix

Q = S12σ(23)S12 = . (8.8)

Here projection operators S12 ensure the restriction to the 2-index symmetric
subspace, and the transposition σ(23) mixes in the third index. To find the char-
acteristic equation for Q, we compute Q2:

Q2 = S12σ(23)S12σ(23)S12 =
1
2
(
S12 + S12σ(23)S12

)
= =

1
2

(
+

)
=
1
2
S12 +

1
2
Q . (8.9)

Hence Q satisfies

(Q− 1)(Q+ 1/2)S12 = 0 , (8.10)
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and the corresponding Young projection operators are

P1 =
Q+ 1

21
1 + 1

2

S12 =
1
3
(
σ(23) + σ(123) + 1

)
S12 = S

=
1
3
( + + ) = (8.11)

P2 =
Q− 1
−1

2 − 1
S12 =

4
3
S12A23S12 =

4
3

. (8.12)

Hence the symmetric 2-index subspace combines with the third index into a sym-
metric 3-index subspace (5.14) and a mixed symmetry subspace with dimensions

d1 = trP1 =
n(n+ 1)(n+ 2)

3!
(8.13)

d2 = trP2 =
4
3

=
n(n2 − 1)
3

. (8.14)

The antisymmetric 2-index subspace can be treated in the same way using in-
variant matrix

Q = A12σ(23)A12 = . (8.15)

The resulting projection operators for the antisymmetric and mixed symmetry
3-index tensors are given in table 8.2. Symmetries of the subspace are indicated
by the corresponding Young tableaux, table 8.2. For example, we have just
constructed

21 ⊗ 3 = 1 32 ⊕ 2
3
1

= +
4
3

n2(n+ 1)
2

=
n(n+ 1)(n+ 2)

3!
+
n(n2 − 1)
3

. (8.16)

Reduction stuff

Table 8.1: Table summarizing the reduction procedure.

Old table 6.4

Table 8.2: Table summarizing the reduction procedure.
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Old table 6.5

Table 8.3: Table summarizing the reduction procedure.

8.3 Young tableaux

As we have seen in the above examples, the projection operators for two-index
and three-index tensors can be constructed using the characteristic equations.
This, however, becomes cumbersome when applied to tensors with more than
3 indices. We now show how to construct Young projection operators for the
irreducible representations of U(n) directly from the Young tableaux.

8.3.1 Definitions

Partition k boxes into D subsets, so that themth subset contains λi boxes. Order
the partition so the set λ = [λ1, λ2, . . . , λD] fulfils λ1 ≥ λ2 ≥ . . . ≥ λD ≥ 1 and∑D

i=1 λi = k. The diagram obtained by drawing the D rows of boxes on top of
each other, left alligned, starting with λ1, is called a Young diagram Y.

Examples: For k = 4 the ordered partitions for k = 4 are [4], [3, 1], [2, 2], [2, 1, 1]

and [1, 1, 1, 1]. For the k = 7 partition [4, 2, 1] the Young diagram is and

for the k = 3 partition [1, 1, 1] it is .

A box in a Young diagram can be assigned a coordinate (i, j) such that
Y = {(i, j) ∈ Z

2|1 ≤ j ≤ λi}. Here i label the rows and j the columns.
Inserting a number from the set {1, . . . , n} into every box of a Young diagram

Yλ in such a way that numbers increase when reading a column from top to
bottom and numbers do not decrease when reading a row from left to right yields
a Young tableaux Ya. The subscript a labels different tableaux derived from a
given Young diagram, that is different admissible ways of inserting the numbers
into the boxes. Denoting the number in the (i, j)th box by τa(i, j) we have

Ya = {(τa(i, j)) ∈ {1, . . . , n}k | (i, j) ∈ Y,
τa(i, j + 1) ≥ τa(i, j),
τa(i+ 1, j) > τa(i, j)}

A Young tableaux with numbers inserted as above is called a standard arrange-
ment. The monotonically ordered arrangement

Ya = {(τa(i, j)) ∈ {1, . . . , k} | (i, j) ∈ Y,
τa(i, j + 1) > τa(i, j),

τa(i+ 1, j) > τa(i, j)}

is called a k-standard arrangement .
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In the following we denote by Young diagram Y a box diagram without num-
bers, and by Young tableaux Ya a diagram filled with a standard arrangement.
Often we simplify the notation by using Y, Z, . . . to denote both Young diagrams
and Young tableaux.
The transpose diagram Yt is obtained from Y by interchanging rows and

columns. For example, the transpose of [3, 1] is [2, 1, 1], or in the alternative
labelling ()
An alternative labelling of a Young diagram is to list the number bm of

columns with m boxes as (b1b2 . . .). Having k boxes we must have
∑k

m=1mbm =
k. As an example we see that [4, 2, 1] and (21100 . . .) label the same Young dia-
gram. Similarly for [2, 2] and (020 . . .). This notation is handy when considering
Dynkin labels.

8.3.2 SU(n) Young tableaux

We now show that a Young tableau with no more than n rows corresponds to an
irreducible representation of SU(n).
A k-index tensor is represented by a Young diagram with k boxes — one may

think of this as a k particle state. For SU(n) there are n one-particle states avail-
able and the irreducible k-particle states correspond to a Young tableaux obtained
by inserting the numbers 1, . . . , n into the k boxes of the Young diagrams. Boxes
in a row correspond to indices that are symmetric under interchanges (symmetric
multiparticle states), and boxes in a column correspond to indices antisymmetric
under interchanges (antisymmetric multiparticle states).
Consider the reduction of a two-particle state, that is a two-index tensor, into

a symmetric and an antisymmetric state (8.5). Using Young diagrams we would
write this as

⊗ = ⊕ (8.17)

For the n = 2 case the Young tableaux of SU(2) are:

11 , 21 , 22 and 1
2

(8.18)

The dimension of an irreducible representation of SU(n) is found by counting
the number of standard arrangements. Thus for SU(2) the symmetric state is 3
dimensional whereas the antisymmetric state is 1 dimensional, in agreement with
the formulas (5.4) and (5.16) for the dimensions of the symmetry operators. In
section sect. 8.4.1 we shall state and prove the dimension formula for a general
irreducible U(n) representation.
For SU(n) columns cannot contain more than n boxes, as it is impossible to

antisymmetrize more than n labels. Columns of n boxes can be contracted away
by means of the Levi-Civita tensor sect. ??. Hence the highest column is of height
n− 1, which is also the rank of SU(n). Furthermore, for SU(n) a column with k
boxes (antisymmetrization of covariant k indices) can be converted by contraction
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with the Levi-Civita tensor into a column of (n−k) boxes (corresponding to (n−k)
contravariant indices). This operation associates with each tableau a conjugate
representation. Thus the conjugate of a SU(n) Young diagram Y is constructed
from the missing pieces needed to complete the rectangle of n rows:

(8.19)

That is, add squares below the diagram of Y such that the resulting figure is
rectangle with height n and width of the top row in Y. Remove the squares
corresponding to Y and rotate the rest by 180 degrees. The result is the conjugate
diagram of Y. For example, for SU(6), representation (20110)

→ (8.20)

has as its conjugate representation (01102). In general, the SU(n) representations
(b1b2 . . . bn−1) and (bn−1 . . . b2b1) are conjugate. For example, if (10 . . . 0) stand
for the defining representation, then its conjugate is represented by (00 . . . 01),
ie. a column of n− 1 boxes.
We prefer to keep the conjugate representations conjugate, rather than re-

placing them by columns of (n− 1) defining representations, as this will give us
SU(n) expressions valid for any n.

8.3.3 Reduction of direct products

We now state the rules for reduction of direct products such as (8.17) in terms
of Young diagrams:
Draw the two diagrams next to one another and place in each box of the second

diagram an ai, i = 1, . . . , k, such that the boxes in the first row all have a1 in
them, second row boxes have a2 in them etc. The boxes of the second diagram
are now added to the first diagram to create new diagrams in accordance to the
rules

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to the sum of the
number of boxes in the original two diagrams.

3. For SU(n) no diagram has more than n rows.

4. Making a journey through the diagram starting with the top row and en-
tering each row from the right, at any point the number of ai’s encountered
in any of the attached boxes must not exceed the number of previously
encountered ai−1’s.
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5. The numbers must not increase when reading across a row from left to
right.

6. The numbers must decrease when reading a column from top to bottom.

The rules 4-6 ensure that states which were previously symmetrized are not
antisymmetrized in the product and vice versa, and to avoid counting the same
state twice.

8.4 Young projection operators

Given a Young tableau Y of U(n) with an k-standard arrangement we construct
the corresponding Young projection operator PY in birdtrack notation by iden-
tifying each box in the diagram with a directed line. The operator PY is a block
of symmetrizers to the left of a block of antisymmetrizers, all imposed on the
n lines. The blocks of symmetry operators are dictated by the Young diagram
whereas the attachment of lines to these operators follows from the k-standard
arrangement.
For a Young diagram Y with s rows and t columns we refer to the rows as S1,

S2, . . . ,Ss and to the columns as A1, A2, . . . ,At. Each symmetry operator in PY

is associated to a row/column in Y, hence we label a symmetry operator after
the corresponding row/column,

... ...

2 3 4 5

S1

S2

S3

AA AAA1

= αY

5A

2S

S 3

A 4

S 1
1

3

A 2

A

A

(8.21)

We denote by |Si| or |Ai| the length of a row or column, respectively, that
is the number of boxes it contains. Thus |Ai| also denotes the number of lines
entering the antisymmetrizer Ai. In the above example we have |S1| = 5, and
|A2| = 3, etc.
An example of the construction of the Young projection operators: The Young

diagram tells us to use one symmetrizer of length three, one of length one,
one antisymmetrizer of length two, and two of length one. There are three distinct
k-standard arrangements, each corresponding to a projection operator

1 2 3
4

= αY (8.22)

1 2
3

4 = αY (8.23)
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1
2

3 4 = αY , (8.24)

where αY is a normalization constant. We use the convention that if the lines
pass straight through the symmetry operators they appear in the same order as
they entered. More examples of Young projection operators are given in sect. 8.5.
The normalization is given by

αY =

∏s
i=1 |Si|!

∏t
j=1 |Aj |!

|Y| (8.25)

where |Y| is a combinatoric number calculated by the following hook rule. For
each box of the Young diagram Y write the number of boxes below and to the
left of the box (including the box itself — once). Then |Y| is the product of the
numbers in all the boxes. For instance,

Y =
6 15 3

34
2 1

1 (8.26)

has |Y| = 6!·3. We prove that this is the correct normalization in appendix B. The
normalization only depends on the Young diagram, not the particular tableau.
For multidimensional irreducible representations the Young projection oper-

ators constructed as above will generally be different from the ones constructed
from characteristic equations, see sects. 8.1–8.2, but the difference amounts to a
choice of basis, so they are equivalent.
We prove in appendix B that the above construction indeed yields well-defined

projection operators. Some of the properties of the Young projection operators:

• The Young projection operators are indeed projections, P 2
Y = PY.

• The Young projection operators are orthogonal : If Y and Z are two different
k-standard arrangement, then PYPZ = 0 = PZPY.

• For a given k the Young projection operators constitute a complete set such
that 1 =

∑
PY, where the sum is over all k-standard arrangements Y with

k boxes and 1 is the [k × k] unit matrix.

The dimension dY = trPY of a Young projection operator PY can be calcu-
lated directly by tracing PY and expanding it using (5.11) and (5.20). In practice,
this is unnecessarily laborious. Instead, we offer two simple ways of computing
the dimension of an irreducible representation from its Young diagram.

8.4.1 A dimension formula

Let fY(n) be the polynomial in n obtained from the Young diagram Y by multi-
plying the numbers written in the boxes of Y, according to the following rules:

1. The upper left box contains an n.
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2. The numbers in a row increases by one when reading from left to right.

3. The numbers in a column decrease by one when reading from top to bottom.

Hence, if k is the number of boxes in Y, fY(n) is a polynomial in n of degree k.
For U(n) the dimension of the irreducible representation labelled by the Young

diagram Y is

dY =
fY(n)
|Y | (8.27)

Example: With Y = [4,2,1] we have

fY(n) =
n

n-1

n+1 n+2 n+3

n

n-2

= n2(n2 − 1)2(n2 − 4)(n+ 3),

and

|Y| =
14 2

1
3
6

1 = 144.

hence

dY =
n2(n2 − 1)2(n2 − 4)(n+ 3)

144
(8.28)

This dimension formula is derived in appendix B. Next we give an intuitive
interpretation of what this formula means.

8.4.2 Dimension as the number of strand colorings

The dimension of a Young projection operator PY of SU(n) can be calculated
by counting the number of distinct ways in which the trace diagram of a Young
projection operator can be colored.
Draw the trace of the Young projection operator. Each line is strand, a closed

path which we draw as passing straight through the symmetry operators. Order
the paths in accordance to the k-standard arrangement (see example). The lines
are colored in this order. Having n colors we can color the first line in n different
ways.

Rule 1: If a path, which could be colored in k ways, enters an antisymmetrizer,
the lines below it can be colored in k − 1, k − 2, . . . ways.

Rule 2: If a path, which could be colored in k ways, enters a symmetrizer,
the lines below it can be colored in k + 1, k + 2, . . . ways.
Label each path with the number of ways it can be colored. The number of

ways to color the trace diagram is the product of all the factors obtained above;
but this is simply fY(n) defined in sect. 8.4.1. An example:
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dY =
fY(n)
|Y| = tr

6
7

1 2

8
4 5

3
=
1
|Y|

n+2
n

n+1

n+3

n-1

n-2

n

n+1

. (8.29)

8.5 Reduction of tensor products

We now apply the rules for decomposition of direct products of Young dia-
grams/tableaux to several explicit examples. We use the tableaux to compute
the dimensions and construct the Young projection operators. We have already
treated the decomposition of the two-index tensor into the symmetric and the
anti-symmetric tensors, but we shall reconsider the three-index tensor, since the
projection operators will be different from those derived from the characteristic
equations in sect. 8.2.

8.5.1 Three- and four-index tensors

According to the rules in sect. 17.10, the three-index tensor reduces to

1 ⊗ 2 ⊗ 3 =
(

21 ⊕ 1
2

)
⊗ 3 = 1 32 ⊕ 2

3
1 ⊕ 1

2
3 ⊕

1
2
3
. (8.30)

The corresponding dimensions and Young projection operators are given in ta-
ble 8.5.1. For simplicity, we neglect the arrows on the lines where this leads to
no confusion.
Let us check the completeness by an explicit computation. In the sum of

the fully symmetric and the fully antisymmetric tensors all the odd permutions
cancel, and we are left with

+ =
1
3
( + + ) (8.31)

Expanding the two tensors of mixed symmetry, we obtain
4
3

(
+

)
=
2
3

− 1
3

− 1
3

. (8.32)

Adding (8.31) and (8.32) we get

+
4
3

+
4
3

+ = , (8.33)

varifying the completeness relation.
For four-index tensors the decomposition is performed as in the three-index

case, resulting in table 8.5.1.
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Ya dYa PYa

1 32
n(n+1)(n+2)

6

2
3
1 n(n2−1)

3
4
3

1
2

3 n(n2−1)
3

4
3

1
2
3

(n−2)(n−1)n
6

1 ⊗ 2 ⊗ 3 n3

Table 8.4: Reduction of three-index tensor. The bottom row is the direct sum of
the Young tableaux, the sum of the dimensions, and the sum of the projection
operators (completeness).

8.5.2 Basis vectors

The Young projection operators as constructed above are also projection oper-
ators of the symmetric group Sn. If we let Y be a Young tableau labelling an
irreducible representation of Sn, the dimension of the representation is

dY =
n!
|Y| . (8.34)

For the two-index tensors we see that application of the projection operators
project any group element to the subspace of the projection in question.
For the three-index tensors the result is not as simple as that, because the Sn

representation is two-dimensional. Instead, when the three-index projection
operators are applied from the right, the group elements of Sn are projected to
the set

{ }
,




4
3

4
3


 ,



4
3

4
3


 ,
{ }

. (8.35)

of basis vectors. For higher-index tensors there are similar sets of basis vectors.
The number of components in each basis vector is the dimension of the projection
operator in Sn.
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Ya dYa PYa

2 3 41
n(n+1)(n+2)(n+3)

24

1
4

2 3 (n−1)n(n+1)(n+2)
8

3
2

1 42
3

(n−1)n(n+1)(n+2)
8

3
2

1 4
2

3 (n−1)n(n+1)(n+2)
8

3
2

2
4

1
3

n2(n2−1)
12

4
3

1 3
42

n2(n2−1)
12

4
3

1

4

2
3

(n−1)n(n+1)(n+2)
8

3
2

1
2
4

3 (n−2)(n−1)n(n+1)
8

3
2

1

3

4
2

(n−2)(n−1)n(n+1)
8

3
2

4

1

3
2 (n−2)(n−1)n(n+1)

8

1 ⊗ 2 ⊗ 3 ⊗ 4 n4

Table 8.5: Reduction of four-index tensor.

8.6 3-j symbols

The SU(n) three-vertex is written

X

Z

Y =
√
αXαYαZ a

P

P

PY

X

Z

b

c

...
...

(8.36)
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in terms of the Young projection operators PX, PY, and PZ. If b + c �= a the
vertex vanishes; if a = b + c the vertex might be non-vanishing. The overall
normalization is arbitrary, but

√
αXαYαZ is a natural choice, see (8.25).

A 3-j consists of two fully contracted three-vertices. We therefore have

Y

X

Z

= αXαYαZ

XP

P

PY

......

... ...

Z

(8.37)

which we write tr (X⊕ Z)⊗Y. As an example, take

X = 1
3

2 , Y = 2
5 6

1 4
3

, and Z = 5
6
4 .

Then

Y

X

Z

=
4
3
· 2 · 4
3

For economy of notation we omit the arrows on the Kronecker delta lines.

8.6.1 Evaluation by direct expansion

The simplest 3-j’s to evaluate are tr ( ⊕ )⊗ and tr ( ⊕ )⊗ .
Any SU(n) 3-j may be evaluated by direct expansion of the symmetry op-

erators, but the resulting number of terms grows combinatorially with the total
number of boxes in the Young diagram Y, making brute force expansion an
unattractive method.
There is a slightly less brutal expansion method. Expanding one symmetry

operator may lead to simplifications of the diagram, for instance by using rules
such as (5.8), (5.9), (5.18), and (5.19). An example of the application of this
method is given in (Elvang).
If Y is a Young diagram with a single row or a single column it is easily seen

that the 3-j X⊗Y ⊗ Z is either 0 or dY.

8.6.2 Application of the negative dimension theorem

An SU(n) invariant scalar is a fully contracted object (vacuum bubble) consisting
of Kronecker deltas and Levi-Civita symbols. Since there are no external legs,
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the Levi-Civitas appear only in pairs, making it possible to combine them into
antisymmetrizers. In birdtrack notation, an SU(n) invariant scalar is therefore a
vacuum bubble graph built only from symmetrizers and antisymmetrizers.
The negative dimensionality theorem for SU(n) states that for any SU(n)

invariant scalar exchanging symmetrizers and antisymmetrizers is equivalent to
replacing n by −n:

SU(n) = SU(−n) . (8.38)

where the bar on SU indicates transposition, ie. exchange of symmetrizations and
antisymmetrizations. The theorem also applies to U(n) invariant scalars, since
the only difference between U(n) and SU(n) is the invariance of the Levi-Civita
tensor in SU(n). The proof of this theorem is given in chapter 12.
For the dimensions of the Young projection operators we have dYt(n) =

dY(−n) by the negative dimensionality theorem, where Yt is the transpose of
the k-standard arrangement Y; hence it suffices to compute the dimension once,
either for Y or Yt.
Now for k-standard arrangements X, Y, and Z, compare the diagram of Xt⊗

Yt ⊗ Zt to that of X ⊗ Y ⊗ Z. The diagrams are related by a reflection in a
vertical line, reversal of the arrows on the lines, and interchange of symmetrizers
and antisymmetrizers. The first two operations do not change the value of the
diagram, hence the value of Xt ⊗Yt ⊗ Zt is the value of X⊗Y⊗ Z with n↔ −n
(and possibly an overall sign). Hence it is sufficient to calculate approximately
half of all 3-j’s.

Challenge

We have seen that there is a coloring algorithm for the dimensionality of the
Young projection operators. Find a coloring algorithm for the 3-j’s of SU(n) —
open question.

8.6.3 A sum rule for 3-j’s

Let Y be a k-standard arrangement with k boxes and let Λ be the set of all k-
standard arrangements and Λp the set of k-standard arrangements with p boxes.
Then

∑
(X,Z)∈Λ

Y

X

Z

= (k − 1)dY. (8.39)

First of all, the sum is well-defined, ie. finite, because the 3-j is non-vanishing
only if the number of boxes in X and Z add up to k, and this only happens for
finitely many tableaux.
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To prove this, recall that the Young projection operators constitute a complete
set,
∑

X∈Λp
PX = 1, where 1 is the [p× p] unit matrix. Hence,

∑
X,Z∈Λ

Y

X

Z

=
k−1∑
m=1

∑
X ∈ Λm
Z ∈ Λk−m

XP

P

PY

......

... ...

Z

=
k−1∑
m=1

...

PY

... ...

...

=
k−1∑
m=1

dY = (k − 1)dY . (8.40)

This sum rule offers a cross-check on the individual 3-j calculations.

8.7 Characters

Now that we have explicit Young projection operators we should be able to com-
pute any SU(n) invariant scalar. As an example we will consider calculations of
characters of SU(n).
Given an irreducible representation we have the corresponding Young tableau

k-standard arrangement Y, which enable us to calculate the character χY(M) =
trYM , where M is a unitary [n× n] matrix.
Diagrammatically we shall denote M as Mij = j i. Then

χY(M) = YP

...

(8.41)

Expanding the symmetry operators and collecting terms we find

χY(M) =
k∑

m=0

cm(trM)mtrMk−m , (8.42)

where k is the number of boxes in Y and the cm’s are coefficients of the expansion.

8.8 Mixed two-index tensors

As the next trivial example consider mixed tensors q(1) ⊗ q(2) ∈ V ⊗ V . The
Kronecker delta invariants are the same as in sect. 8.1, but now they are drawn
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differently (we are looking at a “cross channel”):

identity: 1 = 1b ca,d = δ
c
aδ
b
d = ,

trace: T = T b ca,d = δ
b
aδ
c
d = . (8.43)

The matrix has a trivial characteristic equation

T 2 = = nT , (8.44)

with roots λ1 = 0, λ2 = n;

T (T − n) = 0 . (8.45)

The corresponding projection operators (??) are

P1 =
1
n
T =

1
n

, (8.46)

P2 = 1− 1
n
T = − 1

n
(8.47)

= (8.48)

with dimensions d1 = trP1 = 1, d2 = trP2 = n2 − 1. (9.14) is the projection
operator for the adjoint representation of SU(n). In this way the invariant matrix
T has resolved the space of tensors xab ∈ V ⊗ V into

singlet: P1x =
1
n
xccδ

b
a , (8.49)

traceless part: P2x = xba −
(
1
n
xcc

)
δba . (8.50)

Both projection operators obviously leave δab invariant, so the generators of the
unitary transformations are given by their sum

U(n) :
1
a

= , (8.51)

and the dimension of U(n) is NtrPA = δaaδ
b
b = n

2. If we extend the list of
primitive invariants from the Kronecker delta to the Kronecker delta and the
Levi-Civita tensor (5.28), the singlet subspace does not satisfy the invariance
condition (5.61)

birdTrack �= 0 . (8.52)

For the traceless subspace (8.48), the invariance condition is

birdTrack− 1
n
birdTrack = 0 . (8.53)
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This is the same relation as (5.26). (Expand the antisymmetrization operator
using (5.20) so the invariance condition is satisfied.) The adjoint representation
is given by

SU(n) :
1
a

= − 1
n

1
a
(Ti)

a
b (Ti)

d
c = δac δ

d
b −
1
n
δab δ

d
c . (8.54)

SU(n) is, by definition, the invariance group of the Levi-Civita tensor (hence
’special’) and the Kronecker delta (hence ’unitary’), and its dimension is N =
n2 − 1. The defining representation Dynkin index follows from (??) and (??)

;−1 = 2n (8.55)

(This was evaluated in the example of sect. ??). The Dynkin index for the singlet
representation (8.49) vanishes identically (as it does for any singlet representa-
tion).

8.9 Mixed defining × adjoint tensors

In this and the following section we generalize the reduction by invariant matrices
to spaces other than the defining representation. Such techniques will be very
useful later on, in our construction of the exceptional Lie groups. We consider
the defining × adjoint tensor space as a projection from V ⊗ V space:

= (8.56)

The following two invariant matrices acting on V 2 ⊗ V space contract or inter-
change defining representation indices:

R = (8.57)

Q = = (8.58)

R projects onto the defining space, and satisfies characteristic equation

R2 = =
n2 − 1
n
R . (8.59)

The corresponding projection operators are

P1 =
n

n2 − 1 ,

P4 = − n

n2 − 1 . (8.60)
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82 CHAPTER 8. UNITARY GROUPS

Q takes a single eigenvalue on the P1 subspace

QR = = − 1
n
R . (8.61)

Q2 is computed by inserting the adjoint representation projection operator (8.54):

Q2 = = − 1
n

. (8.62)

The projection on the P4 subspace yields the characteristic equation

P4(Q2 − 1) = 0 , (8.63)

with the associated projection operators

P2 =
1
2
P4(1 +Q) =

1
2

(
− n

n2 − 1

)(
+

)
(8.64)

=
1
2

(
+ − 1

n+ 1

)
, (8.65)

(8.66)

P3 =
1
2
P4(1−Q)

=
1
2

(
− − 1

n− 1

)
.

The dimensions of the two subspaces are computed by taking traces of their
projection operators:

d2 = trP2 = birdTrack =
1
2

(
birdTrack+ birdTrack− 1

n+ 1
birdTrack

)

=
1
2

(
nN +N − 1

n+ 1
N

)(
n+ 1− 1

n+ 1

)

=
(n− 1)n(n+ 2)

2
, (8.67)

and similarly for d3. This is tabulated in table 8.5.
Mostly for illustration purposes, let us now perform the same calculation by

utilizing the algebra of invariants method outlined in sect. 3.3. A possible basis
set picked from the V ⊗A→ V ⊗A linearly independent tree invariants consists
of

(e, R,Q) =
(

, ,

)
. (8.68)

The multiplication table (3.39) has been worked out in (8.59), (8.61) and (8.62).
For example, the (tα)βγ matrix representation for Qt is

∑
γ∈T
(Q)βγtγ = Q


 e
R
Q


 =


 0 0 1
0 −1/n 0
1 −1/n 0




 e
R
Q


 (8.69)
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and similarly for R. In this way we obtain the [3×3] matrix representation of the
algebra of invariants

{e, R,Q} =




 1 0 00 1 0
0 0 1


 ,

 0 1 0
0 n− 1

n 0
0 −1/n 0


 ,

 0 0 1
0 −1/n 0
1 −1/n 0




 (8.70)

From (8.59) we already know that the eigenvalues of R are {0, 0, n− 1
n}. The last

eigenvalue yields the projection operator P1 = n
n2−1
, but the projection operator

P4 yields a 2-dimensional degenerate representation. Q has 3 distinct eigenvalues
{− 1

n , 1,−1} and is thus more interesting; the corresponding projection operators
fully decompose the V ⊗ A space. − 1

n eigenspace projection operators is again
P1, but P4 is split into 2 subspaces, verifying (8.66) and (8.64):

P2 =
(Q+ 1)(Q+ 1

n1)
(1 + 1)(1 + 1

n)
=
1
2

(
1+Q− 1

n+ 1
R

)

P3 =
(Q− 1)(Q+ 1

n1)
(−1− 1)(−1 + 1

n)
=
1
2

(
1 −Q− 1

n− 1R
)
. (8.71)

We see that the matrix representation of the algebra of invariants is a fine tool for
implementing the full reduction, and perhaps easies to implement as computation
than out ans out birtracks manipulation.
To summarize the invariant matrix R projects out the one-particle subspace

P1. The particle exchange matrix Q splits the remainder into the irreducible
particle-adjoint subspaces P2 and P3.

8.10 Two-index adjoint tensors

Consider the Kronecker product of two adjoint representations. We want to
reduce the space of tensors xij ∈ A⊗A, with i = 1, 2, . . . dA. The first decompo-
sition is the obvious decomposition (9.14) into the symmetric and antisymmetric
subspaces

1 = S + A

birdTrack = + . (8.72)

As the adjoint representation is real, the symmetric part can be split into the
trace and the traceless part, as in (??)

S =
1
dA
T + PS

=
1
dA

+
{

− 1
dA

}
. (8.73)
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84 CHAPTER 8. UNITARY GROUPS

8.11 Casimirs for the fully symmetric representations
of SU(n)

In this section we carry out a few explicit birdtrack Casimir evaluations.

8.12 SU(n), U(n) equivalence in adjoint representation

8.13 Dynkin labels for SU(n) representations
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Chapter 9

Orthogonal groups

Orthogonal group SO(n) is the group of transformations which leave invariant a
symmetric quadratic form (q, q) = gµνqµqν :

gµν = gνµ = birdTrack (9.1)

If (q, q) is an invariant, so is its complex conjugate (q, q)∗ = gµνqµqν , and

gµν = gνµ = µbirdTrackν (9.2)

is also an invariant tensor. Matrix Aνµ ≡ gµσgσν must be proportional to unity, as
otherwise its characteristic equation would decompose the defining n-dimensional
representation. A convenient normalization is

gµσg
σν = δνµ

birdTrack = birdTrack (9.3)

As the indices can be raised and lowered at will, nothing is gained by keeping
arrows. Our convention will be to perform all contractions with metric tensors
with upper indices, and omit the arrows and the open dots:

gµν ≡ birdTrack . (9.4)

All other tensors will have lower indices. For example, Lie group generators (Ti)νµ
from (??) will be replaced by

(Ti)µν = birdTrack

≡ birdTrack . (9.5)

The invariance condition (??) for the metric tensor

birdTrack+ birdTrack = 0

(Ti)
σ
µ gσν + (Ti)

σ
ν gµσ = 0 (9.6)
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86 CHAPTER 9. ORTHOGONAL GROUPS

becomes in this notation a statement that the SO(n) generators are antisymmet-
ric:

birdTrack+ birdTrack = 0

(Ti)µν = − (Ti)νµ (9.7)

Our analysis of the representations of SO(n) will depend only on the existence
of a symmetric metric tensor and its invertability, and not on its eigenvalues.
The resulting Clebsch-Gordan series applies both to the compact SO(n), and
non-compact orthogonal groups such as the Minkowski group SO(1, 3). In this
chapter, we outline the construction of SO(n) tensor representations. Spinor
representations will be taken up in chapter ??

9.1 Two-index tensors

9.2 Three-index tensors

9.3 Mixed defining × adjoint tensors

9.4 Two-index adjoint tensors

9.5 Gravity tensors

In a different application of the birdtracks, we now change the language, and con-
struct ’irreducible rank-four gravity curvature tensors”. (Birdtracks for Young
projection operators had originally been invented by Penrose (1971) in this con-
text.) The Riemann-Christoffel curvature tensor has the following symmetries
(Weinberg 1972):

Rαβγδ = −Rβαγδ′ (9.8)

Rαβγδ = −Rγδαβ′ (9.9)

Rαβγδ + Rβγαβ +Rγαβδ = 0 . (9.10)

9.6 Dynkin labels of SO(n) representations

In general, one has to distinguish between the odd and the even dimensional
orthogonal groups, as well as their spinor and ono-spinor representations.
For SO(2r+ 1) representations there are r Dynkin labels (a1a2 . . . ar−1Z). If

Z is odd, the representation is spinor; if Z is even, it is tensor.
In this chapter, we study only the tensor representations. For the tensor

representations, the corresponding Young tableau (9.14) is given by

(a1a2 . . . ar−1Z)→ (a1a2 . . . ar−1
Z

2
00 . . .) . (9.11)
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For example, for SO(7) representation (102) have

(102)→ (1010 . . .) = birdTrack (9.12)

For orthogonal groups the Levi-Civita tensor can be used to convert a long col-
umn of k boxes into a short column of (2r + 1 − k) boxes. The highest column
which cannot be shortened by this procedure has r boxes. r is the rank of
SO(2r + 1). For SO(2r) representations, the last two Dynkin labels are spinor
roots (a1a2 . . . ar−2Y Z). Tensor representations have Y + Z =even. However,
as spinors are complex, tensor representations can also be complex, conjugate
representations being related by

(a1a2 . . . Y Z) = (a1a2 . . . ZY )∗ . (9.13)

For Z ≥ Y, Z + Y even, the corresponding Young tableau is given by

(a1a2 . . . ar−2Y Z)→ (a1a2 . . . ar−2,
Z − Y
2
, 0, 0, . . .) (9.14)

The Levi-Civita tensor can be used to convert long columns into short columns.
For columns of r boxes, the Levi-Civita tensor splits 0(2r) representations into
conjugate pairs of SO(n) representations. Of the various expressions for the
dimensions of SO(n) tensor representations, we find the formula of King (1972)
and Murtaza and Rashid (1973) the most convenient.
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Chapter 10

Spinors

In chapter 9 we have discussed only the tensor representation of orthogonal
groups. However, the spinor representations of SO(n) play a fundamental role
in particle physics, both as representations of space-time symmetries (Pauli spin
matrices, Dirac gamma matrices, fermions in D-dimensional supergravities), and
as representations of internal symmetries (SO(10) grand unified theory, for ex-
ample). In calculations of radiative corrections, the QED ’colour’ weights (ie.,
spin traces) can easily run up to traces of some twelve gamma matrices (Ki-
noshita 1981), and efficient evaluation algorithms are of great practical impor-
tance. A most straightforward algorithm would evaluate such a trace in some
11!! = 11 · 9 · 7 · 5 · 3 � 10 000 steps. Even computers shirk such tedium. A good
algorithm will do the job in some 62 � 100 steps.
Spinors came to Cartan (1864) as an unexpected fruit of his labours on the

complete classification of representations of the simple Lie groups. Dirac (1928)
rediscovered them while looking for a linear version of the relativistic Klein-
Gordon equation. He introduced matrices γµ which were required to satisfy

(p0γ0 + p1γ1 + . . .)2 = (p20 − p21 − p22 − . . .) . (10.1)

For n = 4 he constructed gammas as [4 × 4] complex matrices. For SO(2r)
and SO(2r+1) gamma matrices were constructed explicitly as [2r × 2r] complex
matrices by Weyl and Brauer (1935). In the early days, such matrices were taken
as a literal truth, and Klein and Nishina (1929) are reputed to have computed
their cross-section by multiplying by hand explicit [4×4] matrices. Nevertheless,
all information that is actually needed for spin traces evaluation is contained in
the Dirac algebraic condition (10.2), ie. the Clifford algebra of γ matrices

{γµ, γν} = 2gµν . (10.2)

Iterative application of this condition immediately yields a spin traces evaluation
algorithm in which the only residue of gamma matrices is the normalization fac-
tor tr1. However, this simple algorithm is inefficient in the sense that it requires
a combinatorially large number of evaluation steps. The most efficient algo-
rithm on the market (for arbitrary n) appears to be the one given by Kennedy
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(1982) [Cvitanović and Kennedy (1982)]. In Kennedy’s algorithm, one views the
spin trace to be evaluated as a 3n − j coefficient. Fierz (1934) identities are
used to express this 3n − j coefficient in terms of 6j coefficients (cf. sect. 9.14).
Gamma matrices are [2n/2 × 2n/2] in even dimensions, [2(n−1)/2 × 2(n−1)/2] in
odd dimensions, and at first sight it is not obvious that a smooth analytic con-
tinuation in dimension should be possible for spin-traces. The reason why the
Kennedy algorithm succeeds is that spinors are really not there at all. Their
only role is to restrict the SO(n) Clebsch-Gordan series to fully antisymmetric
representations. The corresponding 3j and 6j coefficients are relatively simple
combinatoric numbers, with analytic continuations in terms of gamma functions.
The case of four spacetime dimensions is special because of the reducibility of
SO(4) to SU(2) × SU(2). Farrar and Neri (1983), who have (as of 18th April
1983) computed in excess of 58 149 Feynman diagrams, have used this structure
to develop a very efficient method for evaluating SO(4) spinor expressions. An
older technique is the Kahane (1968) algorithm, which implements diagrammat-
ically the Chisholm (1963) identities. (REDUCE (Hearn 1970) uses the Kahane
algorithm). Thrnblad (1967) has used SO(4) ⊂ SO(5) embedding to speed-up
evaluation of traces for massive fermions.

10.1 Spinograpy

Kennedy (1982) introduced diagrammatic notation for gamma matrices

10.2 Fierzing around

10.3 Fierz coefficients

10.4 6j coefficients

10.5 Exemplary evaluations

10.6 Invariance of γ-matrices

10.7 Handedness

10.8 Kahane algorithm

For the case of four dimensions, there is a fast algorithm for trace evaluation, due
to Kahane (1968).
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Chapter 11

Symplectic groups

Symplectic group SP (n) is the group of all transformations which leave invariant
a skew symmetric quadratic form (p, q) = gabpaqb:

gab = − gba a, b = 1, 2, . . . n

a

b

= − n even (11.1)

The birdtrack notation is motivated by the need to distinguish the first and the
second index: it is a special case of the birdtracks for antisymmetric tensors of
even rank (??). If (p, q) is an invariant, so is its complex conjugate (p, q)∗ =
gbapaqb, and

gab = − gba

a

b

= − (11.2)

is also an invariant tensor. Matrix Aba = gacg
cb must be proportional to unity, as

otherwise its characteristic equation would decompose the defining n-dimensional
representation. A convenient normalization is

gacg
cb = − δba

(11.3)

= − = − (11.4)

Indices can be raised and lowered at will, so the arrows on lines can be dropped.
However, omitting symplectic warts (the black half-circles) appears perilous, as
without them it is hard to keep track of signs. Our convention will be to perform
all contractions with gab, and omit the arrows but not the warts:

gab =a
b

(11.5)
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All other tensors will have lower indices. The Lie group generators (Ti)a b will
be replaced by

(Ti)ab = . (11.6)

The invariance condition (??) for the symplectic invariant tensor is

+ = 0

(Ti)a cgcb + (Ti)b cgac = 0 . (11.7)

A skew symmetric matrix gab has the inverse in (8.3) only if Det|g| �= 0. That is
possible only in even dimensions, so Sp(n) can be realized only for even n.
In this chapter we shall outline the construction of Sp(n) tensor representa-

tions. They are obtained by contracting the irreducible tensors of SU(n) with the
symplectic metric gab and decomposing them into traces and traceless parts. The
representation theory for Sp(n) is analogous in step-by-step fashion to the rep-
resentation theory for SO(n). In chapter ??????? we shall show that this arises
because the two groups are related by supersymmetry, and in chapter ???????
we shall exploit this connection by showing that all group-theoretic weights for
the two groups are related by analytic continuation into negative dimensions.

11.1 Two-index tensors

The decomposition goes the same way as for SO(n), sect. 9.14. The matrix (??)
is given by:

T = (11.8)

and satisfies the same characteristic equation (11.11) as before. Now T is an-
tisymmetric, AT = T , and only the antisymmetric subspace gets decomposed.
The final decomposition of Sp(n) two-index tensors is

singlet: (P1)ab,cd = 1
ngabgcd =

1
n

traceless
antisymmetric: (P2)ab,cd = 1

2(gadgbc − gacgbd)−
1
ngabgcd

= - 1
n

symmetric: (P3)ab,cd = 1
2(gadgbc + gacgbd)

=

(11.9)
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The SU(n) adjoint representation (??) is now split into traceless symmetric and
antisymmetric parts. The adjoint representation of Sp(n) is given by the sym-
metric subspace, as only P3 satisfies the invariance condition (11.7):

+ birdTrack = 0 (11.10)

Hence the projection operator for Sp(n) is given by

1
a

= birdTrack (11.11)

The dimension of Sp(n) is

N = trPA = birdTrack =
n(n+ 1)
2

(11.12)

Remember that all contractions are carried out by gab - hence the extra warts in
the trace expression. Dimensions of other representation and the Dynkin indices
are listed in ???? .

11.2 Mixed defining × adjoint tensors

11.3 Dynkin labels of Sp(n) representations
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Chapter 12

Negative dimensions

A cursory examination of the expressions for the dimensions and the Dynkin in-
dices listed in the tables of chapter ??, chapter ?? and chapter ?? reveal intriguing
symmetries under substitution n→ −n. This kind of symmetry is best illustrated
by the representations of SU(n); if λ stands for a Young tableau with p boxes,
and λ for the transposed tableau obtained by flipping λ across the diagonal, (ie.,
exchanging symmetrizations and antisymmetrizations), then the dimensions of
the two tableaux are related by

SU(n) : dλ(n) = (−1)pdλ(−n) . (12.1)

This is evident from the standard recipe (??) for computing the SU(n) rep-
resentation dimensions, as well as from the expressions listed in the tables of
chapter ??. In all cases, exchanging symmetrizations and antisymmetrizations
amounts to replacing n by −n.
Such relations have been noticed before, Parisi and Soulas (1979), have sug-

gested that a Grassmann vector space of dimension n can be interpreted as an
ordinary vector space of dimension −n. Penrose (1971) has introduced the term
’negative dimensions’ in his construction of SU(2) � Sp(2) representations as
SO(−2). King (1972) has proved that the dimension of any irreducible represen-
tation of Sp(n) is equal to that of SO(n) with symmetrizations exchanged with
antisymmetrizations (ie. corresponding to the transposed Young tableau), and n
replaced by −n. Mkrtchyan (1981) has observed this relation for the QCD loop
equations. With the advent of supersymmetries, n→ −n relations have become
commonplace, as they are built into the structure of groups such as the orthosym-
pletic group OSp(b, f). Some highly nontrivial examples of n→ −n symmetries
for the exceptional groups (Cvitanović 1981) will be discussed elsewhere in these
notes.
Here we shall prove the following:
Theorem 1. For any SU(n) invariant scalar exchanging symmetrizations and

antisymmetrizations is equivalent to replacing n by −n:

SU(n) = SU(−n) . (12.2)
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Theorem 2. For any SO(n) invariant scalar there exists the corresponding
Sp(n) invariant scalar (and vice versa) obtained by exchanging symmetrizations
and antisymmetrizations, replacing the SO(n) symmetric bilinear invariant dab
by the Sp(n) antisymmetric bilinear invariant fab, and replacing n by −n:

SO(n) = Sp(−n) ,
(12.3)

Sp(n) = SO(−n) , (12.4)

(the bars on SU , Sp, SO indicate transposition, ie. exchange of symmetrizations
and antisymmetrizations).
All previous n→ −n relations are special cases of these general theorems, the

general proof is much simpler than the published proofs for the special cases.
As we have argued in sect. 9.14, all physical consequences of a symmetry

(representation dimensions, level splittings, etc) can be expressed in terms of
invariant scalars (3n − j coefficients, casimirs, etc), so it suffices to prove the
equivalence (12.2), (12.4) for arbitrary scalar invariants. The idea of the proof
is illustrated by the following typical computation: evaluate, for example, the
following SU(n) 9j coefficient for recoupling of three antisymmetric rank-two-
representations:

22 2 =

= − −

+ − +

+ −

= n3 − n2 − n2 + n− n2 + n+ n− n2

= n(n− 1)(n− 3) . (12.5)

Notice that in the expansion of the symmetry operators the graphs with an odd
number of crossings give an even power of n, and vice versa. If we change the
three symmetrizers into antisymmetrizers, the terms which change the sign are
exactly those with an even number of crossings. The crossing in the original
graph, which had nothing to do with any symmetry operator, appears in every
term of the expansion, and this does not affect our conclusion; an exchange
of symmetrizations and antisymmetrizations amounts to substitution n → −n.
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(The overall sign is only a matter of convention; it depends on how we define
vertices in 3n− j’s.) The proof for the general SU(n) case is even simpler than
the above example:

12.1 SU(n) = SU(−n)

The primitive invariant tensors of SU(n) are the Kronecker tensor δab and the
Levi-Civita tensor εa1···an . All other invariants of SU(n) are built from these two
objects.
A scalar (3n− j coefficient, vacuum bubble) is a number which, in birdtrack

notation, corresponds to a graph with no external legs.
As the directed lines must end somewhere, the Levi-Civita tensors can be

present only in pairs, and can always be eliminated by the identity (5.32). An
SU(n) 3n−j coefficient, therefore, corresponds to a diagram made solely of closed
loops of directed lines and symmetry projection operators, like the example (12.5).
Consider the graph corresponding to an arbitrary SU(n) scalar and expand

all its symmetry operators as in (12.5). The expansion can be arranged (in any
of many possible ways) as a sum of pairs of form

. . .+ ± + . . . (12.6)

with a plus sign if the crossing arises from a symmetrization, and a minus sign if
it arises from an antisymmetrization. Each graph consists only of closed loops,
ie. a definite power of n, and thus uncrossing two lines can have one of two
consequences. If the two crossed line segments come from the same loop, then
uncrossing splits this into two loops, whereas if they come from two loops, it joins
them into one loop. The power of n is changed by the uncrossing:

= n (12.7)

Hence the pairs in the expansion (12.6) always differ by n±1, and exchanging sym-
metrizations and antisymmetrizations has the same effect as substituting n→ −n
(up to an irrelevant overall sign). This completes the proof of (12.2).

Some examples of n→ −n relations for SU(n) representations:

(i) Dimensions of the fully symmetric representations (5.14) and the fully an-
tisymmetric representations (5.22) are related by the gamma-function ana-
lytic continuation formula

n!
(n− p)! = (−1)

p (−n+ p− 1)!
(−n− 1)! . (12.8)
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(ii) The representations (??), (??) correspond to the 2−??? symmetric, anti-
symmetric, respectively. Therefore, their dimensions in table 6.1 are related
by n→ −n.

(iii) The representations (??) and (??) (see table ?? are related by n→ −n for
the same reason.

(iv) n→ −n symmetries in table ??.

(v) Dimension formula (12.1).

12.2 SO(n) = Sp(−n)

In addition to δab and εab...d, SO(n) preserves a symmetric bilinear invariant dab
for which we have introduced birdtrack open circle notation in (7.1). Such open
circles can occur in SO(n) 3n− j graphs, flipping the line directions. The Levi-
Civita tensor still cannot occur, as directed lines starting on a ε tensor would have
to end on a d tensor, which gives zero by symmetry. Sp(n) differs from SO(n)
by having a skew symmetric bilinear tensor fab, for which we have introduced
birdtrack wart notation in (??). A Levi-Civita tensor can appear in an Sp(n) 3n−
j graph, but as

=
√
det f , (12.9)

(an exercise for the reader), a Levi-Civita can always be replaced by an antisym-
metrization

= (det f)−
1
2 (12.10)

For any SO(n) scalar there exists a correponding Sp(n) scalar, obtained by ex-
changing the symmetrizations and antisymmetrizations and the dab’s and fab’s in
the corresponding graphs. The proof that the two scalars are transformed into
each other by replacing n by −n is the same as for SU(n), except that the two
line segments at a crossing could come from a new kind of loop containing dab’s
or fab’s. In that case, equation (12.7) is replaced by

= = − = + (12.11)

While now uncrossing the lines does not change the number of loops, changing
dab’s to fab’s does provide the necessary minus sign. This completes the proof of
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(12.4) for the tensor representations of SO(n) and Sp(n). To extend the proof to
the spinor representations, we will first have to invent the Sp(n) analog of spinor
representations. We postpone this until the next chapter.
Some examples of SO(n) = Sp(−n) relations:

(i) The SO(n) antisymmetric adjoint representation (??) corresponds to the
Sp(n) symmetric adjoint representation (??)

(ii) Compare table ?? and table ??.

(iii) Penrose (1971) binors: SU(2) = SO(−2).
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Chapter 13

Spinsters

This chapter is based on P. Cvitanović and A.D. Kennedy, Phys. Scripta 26, 5
(1982).
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Chapter 14

SU(n) family of invariance
groups

SU(n) preserves the Levi-Civita tensor, in addition to the Kronecker δ sect. ??.
This additional invariant induces non-trivial decompositions of U(n) represen-
tations. In this chapter we show how the theory of SU(2) representations (the
quantum mechanics textbooks’ theory of angular momentum) is developed by
birdtracking; that SU(3) is the unique group with the Kronecker delta and a
rank-three antisymmetric primitive invariant; that SU(4) is isomorphic to SO(6);
and that for n ≥ 4, only SU(n) has the Kronecker δ and rank-n antisymmetric
tensor primitive invariants.

14.1 Representations of SU(2)

For SU(2) we can construct an additional invariant matrix which would appear
to induce a decomposition of n⊗ n representations

Ea c
b, d =

1
2
εacεbd

(14.1)

= b

d a

c

. (14.2)

However, by (5.32) this can be written as a sum over Kronecker deltas, and is not
an independent invariant. So what does εac do? It does two things; it removes
the distinction between quark and antiquark; (if qa transforms as a quark, then
εabqb transforms as an antiquark), and it reduces the representations of SU(2) to
the fully symmetric ones. Consider n⊗ n decomposition (??)

1 ⊗ 2 = birdTrack+ •
(14.3)

= +
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(14.4)

22 =
2 · 3
2
+
2 · 1
2
. (14.5)

The antisymmetric representation is a singlet

= (14.6)

Now consider the ⊗V 3 and ⊗V 4 space decompositions, obtained by adding
successive quarks one at a time:

= +

(14.7)

= +
3
4

+

(14.8)

1 × 2 × 3 = 1 2 3 + 1 + 3

(14.9)

= +
4
3

+

(14.10)

+
3
2

+
4
3

+

(14.11)

1 × 2 × 3 × 4 = 1 2 3 4 + 1 4 + 3 4

(14.12)

+ 1 2 + •+ •+ • (14.13)

This is clearly leading us into the theory of SO(3) angular momentum addi-
tion, described in any quantum mechanics textbook. We shall anyway persist a
little while longer, just to illustrate how birdtracks can be used to recover some
familiar results.
The projector for m-quark representation is

Pm =
m

2

1

. (14.14)

The dimension is trPm =
2(2+1)(2+2)...(2+m−1)

m! = m + 1 (usually m = 2j, where
j is the spin of the representation). The projection operator (??) for the adjoint
representation (spin 1) is

= − 1
2

.

. (14.15)
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(This can be rewritten as using (14.6)).

The quadratic casimir for the defining representation is

birdTrack =
3
2

. (14.16)

Using

= − 1
2

=
1
2

, (14.17)

we can compute the quadratic casimir for any representation

14.2 SU(3) as invariance group of a cubic invariant

We have proven that the only group that satisfies the conditions (i) - (iii) at the
beginning of this section is SU(3). Of course, it is well-known that the colour
group of physical hadrons is SU(3), and this result might appear rather trivial.
That it is not so will become clear from the further examples of invariance groups,
such as the G2 family of the next chapter.

14.3 Levi-Civita tensors and SU(n)

In chapter ????? we have shown that the invariance group for a skew-symmetric
invariant fab is Sp(n). In particular, for fab = εab, the Levi-Civita tensor, the
invariance group is SU(2) = Sp(2). In the preceding section, we have proven
that the invariance group of a skew-symmetric invariant fabc is SU(3), and that
fabc must be proportional to the Levi-Civita tensor. Now we shall show that for
fabc...d with r indices, the invariance group is SU(r), and f is always proportional
to the Levi-Civita tensor. r = 2 and r = 3 cases had to be treated separately
because it was possible to construct from fab and fabc tree invariants on the
q × q → q × q space which could reduce the colour group SU(n) to a subgroup.
For fab, n ≥ 4 this is indeed what happens: SU(n)→ Sp(n), for n even.

14.4 SU(4) - SO(6) isomorphism
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Chapter 15

G2 family of invariance groups

1

In this chapter we begin the construction of all invariance groups which posses
a symmetric quadratic and an antisymmetric cubic invariant in the defining rep-
resentation. The resulting classification is summarized in fig. 15.1. I find that
the cubic invariant must satisfy either the Jacobi relation (15.7), or the alter-
nativity relation (15.11). In the former case the invariance group can be any
semi-simple Lie group in its adjoint representation; we pursue this possibility in
the next chapter. The latter case is developed in this chapter; we find that the
invariance group is either SO(3) or the exceptional Lie group G2. The problem
of evaluation of 3n − j coefficients for G2 is solved completely by the reduction
identity (15.14). As a byproduct of the construction I give a proof of the Hur-
witz’s theorem, sect. 15.5. I also demonstrate that the independent casimirs for
G2 are of order 2 and 6, by explicitely reducing the 4-th order casimir in sect. 15.4.

Consider the following list of primitive invariants:

(i) δab , so the invariance group is a subgroup of SU(n).

(ii) symmetric gab = gba, gab = gba, so the invariance group is a subgroup of
SO(n). We take this invariant in its diagonal, Kronecker delta form δab.

(iii) a cubic antisymmetric invariant fabc.

Primitivness assumption requires that all other invariants can be expressed in
terms of the tree contractions of δab , fabc.
In the diagrammatic notation one keeps track of the antisymmetry of the

cubic invariant by reading the indices off the vertex in a fixed order:

fabc =
a

b c

= −
a

b c

= −facb . (15.1)

1 superceeds chapter 19 of ref. [13]
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SOSU (n)Sp

= A

n=7

,

8 familyE

SU(3)

=

SO(3)

(n), (n),

= 0

8G

n=6

+ B

-=6

alternativity

two relations one relation

primitives:

assume:

quartic primitive no quartic primitive

any adjoint representation

Jacobi

no relations

Figure 15.1: Logical organization of chapter 15 and chapter 16. The invariance groups
SO(3) and G2 are derived in this chapter, while the E8 family is derived in chapter 16.

The primitiveness assumption implies that the double contraction of a pair of f ’s
is proportional to the Kronecker delta. We can use this relation to fix the overall
normalization of f ’s:

fabcfcbd = α δad

= α (15.2)

For convenience we shall often set α = 1 in what follows.
The next step in our construction is to identify all invariant matrices on⊗
V 2, and construct the Clebsch-Gordan series for decomposition of two-index

tensors. There are six such invariants, the three distinct permutations of indices
of δabδcd, and the three distinct permutations of free indices of fabefecd. For
reasons of clarity, we shall break up the discussion into two steps. In the first
step, sect. 15.1, we assume that a linear relation between these six invariants
exists. Pure symmetry considerations, together with the invariance condition,
completely fix the algebra of invariants and restrict the dimension of the defining
space to either 3 or 7. In the second step, sect. 15.3, we show that a relation
assumed in the first step must exist because of the invariance condition.

Remark 15.1 Quarks and hadrons. An example of a theory with above
invariants would be QCD with the hadronic spectrum consisting of following
singlets:
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15.1. JACOBI RELATION 109

(i) quark-antiquark mesons

(ii) mesons built of two quarks (or antiquarks) in a symmetric color com-
bination

(iii) baryons built of three quarks (or antiquarks) in a fully antisymmetric
color combination

(iv) no exotics, ie. no hadrons built from other combinations of quarks and
antiquarks

As we shall now demonstrate, for this hadronic spectrum the color group is
either SO(3), with quarks of three colors, or the exceptional Lie group G2,
with quarks of seven colors.

15.1 Jacobi relation

If the six invariant tensors mentioned above are not independent, they satisfy a
relation of form

0 = A +B + C +D + E + F (15.3)

Antisymmetrizing a pair of indices yields

0 = A′ + E + F ′ , (15.4)

and antisymmetrizing any three indices yields

0 = (E + F ′) . (15.5)

If the tensor itself vanishes, f ’s satisfy the Jacobi relation (??)

0 = − + . (15.6)

If A′ �= 0 in (15.4), the Jacobi relation relates the second and the third term

0 = + E′ . (15.7)

The normalization condition (15.2) fixes E′ = −1.

= . (15.8)

Contracting with δab we obtain 1 = (n− 1)/2, so n = 3. We conclude that if pair
contraction of f ’s is expressible in terms of δ’s, the invariance group is SO(3)
and fabc is proportional to the 3-index Levi-Civita tensor. To spell it out; in 3
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110 CHAPTER 15. G2 FAMILY OF INVARIANCE GROUPS

dimensions an antisymmetric rank-3 tensor can take only one value, fabc = ±f123
which can be set equal to ±1 by appropriate normalization convention (15.2).
If A′ = 0 in (15.4), the Jacobi relation is the only relation we have, and the

adjoint representation of any simple Lie group is a possible solution. I return to
this case in chapter 16.

15.2 Alternativity and reduction of f-contractions

If the Jacobi relation does not hold we must have E = −F ′ in (15.5), and (15.4)
takes form

+ = A” . (15.9)

Contracting with δab fixes A” = 3/(n − 1). Symmetrizing the top two lines and
rotating the diagrams by 900 we obtain the alternativity relation:

=
1
n− 1

{
−

}
(15.10)

The name comes from the octonian interpretation given in sect. 15.4. Adding the
two equations we obtain

+ =
1
n− 1

{
− 2 +

}
(15.11)

The Clebsch-Gordon decomposition of
⊗
V 2 follows:

=
1
n

+
{

− 1
n

}

+ +
{

−
}

n2 = 1 +
(n− 1)(n+ 2)

2
+ n+

n(n− 3)
2

(15.12)

By (15.9) the invariant is reducible on the antisymmetric subspace. By (15.10)
it is also reducible on the symmetric subspace. The only independent f · f in-
variant is which, by the normalization (15.2), is already the projection oper-
ator which projects the antisymmetric two-index tensors onto the n-dimensional
defining space. The dimensions of the representations are obtained by tracing
the corresponding projection operators.
The adjoint representation of SO(n) is now split into two represen-

tations. Which one is the new adjoint representation? That we determine by
considering (5.61), the invariance condition for fabc. If we take to be the pro-
jection operator for the adjoint representation, we again get the Jacobi condition
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15.2. ALTERNATIVITY AND REDUCTION OF F -CONTRACTIONS 111

with SO(3) as the only solution. However, if we assume that the last term in
(15.12) is the adjoint projection operator

1
a

= − 1
α

, (15.13)

the invariance condition becomes a non-trivial condition:

0 = = − . (15.14)

The last term can be simplified by (15.9) and (5.20)

3 = − 2 = 3 + 2
3
n− 1 .

Substituting back into (15.14) yields

= − 2
n− 1 = .

Expanding the last term and redrawing the equation slightly we have

=
2
n− 1 − 2

3
+
1
3

This equation is antisymmetric under interchange of the left and the right index
pairs. Hence 2/(n − 1) = 1/3, and the invariance condition is satisfied only for
n = 7. Furthermore, the above relation gives us the G2 reduction identity

=
α

3


 − 2 +


 . (15.15)

This identity is the key result of this chapter: it enables us to recursively reduce
all contractions of products of δ-functions and pairwise contractions fabcfcde, and
thus completely solves the problem of evaluating any casimir or 3n− j coefficient
of G2.
The invariance condition (15.14) for fabc implies that

=
1
2

(15.16)
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112 CHAPTER 15. G2 FAMILY OF INVARIANCE GROUPS

The “triangle graph” for the defining representation can be computed in two
ways, either by contracting (15.10) with fabc, or by contracting the invariance
condition (15.14) with δab:

=
4− n
n− 1 =

5− n
4

(15.17)

So the alternativity and the invariance conditions are consistent iff (n−3)(n−7) =
0, ie. only for 3 or 7 dimensions. In the latter case, the invariance group is the
exceptional Lie group G2, and the above derivation is also a proof of Hurwitz’s
theorem, see sect. 15.4.
In this way symmetry considerations together with the invariance conditions,

suffice to determine the algebra satisfied by the cubic invariant. The invariance
condition fixes the defining dimension to n = 3 or 7. Having assumed only that
a cubic antisymmetric invariant exists, we find that if the cubic invariant is not
a structure constant, it can be realized only in 7 dimensions, and its algebra
is completely determined. The identity (15.14) plays the role analogous to that
the Dirac relation {γµ, γν} = 2gµνI plays for evaluation of traces of products of
Dirac gamma-matrices. 2 Just as the Dirac relation obviates need for explicit
representations of γ’s, (15.14) reduces any f · f · f contraction to a sum of terms
linear in f , and obviates any need for explicit construction of f ’s.
The above results now enable us to compute any group-theoretic weight for

G2 in two steps. First we replace all adjoint representation lines by the projec-
tion operators PA (15.13). The resulting expression contains Kronecker deltas
and chains of contractions of fabc, which can then be reduced by systematic ap-
plication of the reduction identity (15.15).

15.3 Primitivity implies alternativity

The only detail which remains to be proven is the assertion that the alternativ-
ity relation (15.10) follows from the primitiveness assumption. I complete the
proof in this section. The proof is rather inellegant and can probably be easily
streamlined.
If no relation (15.3) between the three f · f contraction is assumed, then by

the primitiveness assumption the adjoint representation projection operator PA
is of the form

= A
{

+B + C
}

(15.18)

2 The Klein-Nishina formula of quantum electrodynamics was computed by Klein and Nishina
by explicitely multiplying [4×4] matrix representations of γµ’s and then summing over µ’s. Day
after day they would multiply away whole morning, and then meet in the Niels Bohr Institute’s
cafeteria to compare their results. Today the Klein-Nishina trace over Dirac γ’s is a texbook
exercise, reducible by several applications of {γµ, γν} = 2gµνI.
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15.3. PRIMITIVITY IMPLIES ALTERNATIVITY 113

Assume that the Jacobi relation does not hold; otherwise this immediately reduces
to SO(3). The generators must be antisymmetric, as the group is a subgroup of
SO(n). Substitute the adjoint projection operator into the invariance condition
(5.61) (or (15.14)) for fabc:

0 = +B + C (15.19)

Resymmetrize this equation by contracting with . This is evaluated expand-

ing with (5.20) and using a relation due to the antisymmetry of fabc:

= 0 (15.20)

The result is:

0 = − +
C −B
2

+B (15.21)

Multiplying (15.19) by B, (15.21) by C and subtracting, we obtain

0 = (B + C)


 +

(
B − C

2

) 
 . (15.22)

I return to the case B + C = 0 below, in (15.26).
If B + C �= 0, by contracting with fabc we get B − C/2 = −1, and

0 = − (15.23)

To prove that this is equivalent to the alternativity relation, we contract with
, expand the 3-leg antisymmetrization, and obtain

0 = − 2 − + 2 (15.24)

The triangle subdiagram can be computed by adding (15.19) and (15.21)

0 = (B + C)


12 +
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114 CHAPTER 15. G2 FAMILY OF INVARIANCE GROUPS

and contracting with . The result is

= −1
2

. (15.25)

Substituting into (15.24) we recover the alternativity relation (15.10). Hence we
have proven that the primitivity assumption implies the alternativity relation for
the case B + C �= 0 in (15.22).
If B + C = 0, (15.19) becomes

0 = +B


 + C


 (15.26)

Using the normalization (??) and orthonormality conditions we obtain

=
6− n
9− n (15.27)

1
a

=
6

15− n +
2(9− n)
15− n

{
−

}
(15.28)

N =
1
a

=
4n(n− 3)
15− n (15.29)

The remaining antisymmetric representation

= − − 1
a

=
9− n
15− n

{
− 2 +

3− n
9− n

}
(15.30)

has dimension

d = =
n(n− 3)(7− n)
2(15− n) . (15.31)

The dimension cannot be negative, so d ≤ 7. For n = 7 the projection operator
(15.30) vanishes identically, and we recover the alternativity relation (15.10).
The Diophantine condition (15.31) has two further solutions: n = 5 and

n = 6.
The n = 5 is eliminated by examining the decomposition of the traceless

symmetric subspace in (15.12) induced by the invariant Q = . By the primi-
tiveness assumption Q2 is reducible on the symmetric subspace

0 =
{

+A +B
}{

− 1
n

}
0 = (Q2 +AQ+B)P2 .
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Contracting the top two indices with δab and (Ti)ab we obtain(
Q2 − 1

2
3− n
9− nQ − 5

2
6− n

(2 + n)(9− n)I
)
P2 = 0 (15.32)

For n = 5 the roots of this equation are rational and the dimensions of the two
representations induced by decomposition with respect to Q are not integers.
Hence n = 5 is not a solution. We turn to the case n = 6 in appendix ??.

15.4 Casimirs for G2

In this section we prove that the independent casimirs for G2 are of order 2 and
6, as indicated in the table ??. As G2 is a subgroup of SO(7), its generators are
antisymmetric and only even order casmirs are nonvanishing.
The quartic casimir (in the notation of (??))

= trX4 =
∑
ijkl

xixjxkxltr (TiTjTkTl)

can be reduced by manipulating it with the invariance condition (5.61)

= −2 = 2 + 2

The last term vanishes by further manipulation with the invariance condition

= = 0 (15.33)

The remaining term is reduced by the alternativity relation (15.10)

= =
1
6

{
−

}

This yields the explicit expression for the reduction of quartic casimirs in the
defining representation of G2

=
1
3

{
−

}

trX4 =
1
4
(
trX2

)2 (15.34)

As the defining representation is 7-dimensional, the characteristic equation (??)
reduces the 8th and all higher order casimirs. Hence the independent casimirs
for G2 are of order 2 and 6.
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15.5 Hurwitz’s theorem

Definition (Curtis 1963): A normed algebra A is an n + 1 dimensional vector
space over a field F with a product xy such that

(i) x(cy) = (cx)y = c(xy) , c ∈ F
(ii) x(y + z) = xy + xz , x, y, z ∈ A

(x+ y)z = xz + yz,

and a non-degenerate quadratic norm which permits composition

(iii) N(xy) = N(x)N(y) , N(x) ∈ F. (15.35)

Here F will be the field of real numbers. Let {e0, e1, . . . , en} be a basis of A over
F :

x = x0e0 + x1e1 + . . .+ xnen , xa ∈ F , ea ∈ A . (15.36)

It is always possible to choose eo = I (see Curtis 1963). The product of remaining
bases must close the algebra

eaeb = −dabI+ fabcec , dab, fabc ∈ F a, . . . , c = 1, 2, . . . , n (15.37)

The norm in this basis is

N(x) = x2
0 + dabxaxb. (15.38)

From the symmetry of the associated inner product (Tits 1966)

(x, y) = (y, x) = −N(x+ y)−N(x)−N(y)
2

, (15.39)

it follows that −dab = (ea, eb) = (eb, ea) is symmetric, and it is always possible
to choose bases ea such that

eaeb = −δab + fabcec. (15.40)

Furthermore, from

− (xy, x) = N(xy + x)−N(x)N(y)
2

= N(x)
N(y + 1)−N(y)− 1

2
= N(x)(y, 1), (15.41)

it follows that fabc = (ea, eb, ec) is fully antisymmetric. [In Tit’s (1966) notation,
the multiplication tensor fabc is replaced by a cubic antisymmetric form (a, a′, a′′),
his equation (14)]. The composition requirement (15.35) expressed in terms of
bases (15.36) is

0 = N(xy)−N(x)N(y)
= xaxbycyd (δacδbd − δabδcd + facefcbd) . (15.42)
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To make a contact with sect. 15.2 we introduce diagrammatic notation (factor
i
√
6/α adjusts the normalization to (15.2))

fabc = i

√
6
α

. (15.43)

Diagrammatically, (15.42) is given by

0 = − +
6
α

. (15.44)

This is precisely the relation (15.10) which we have proven to be nontrivially re-
alizable only in 3 and 7 dimensions. The trivial realizations are n = 0 and n = 1,
fabc = 0. So we have inadvertently proven

Hurwitz’s theorem (Curtis (1963): n + 1 dimensional normed algebras over
reals exist only for n = 0, 1, 3, 7 (real, complex, quaternion, octonion).

I call (15.10) the alternativity relation because it can also be obtained by
substituting (15.40) into the alternativity condition for octonions (Schafer 1966)

[xyz] ≡ (xy)z − x(yz) ,
[xyz] = [zxy] = [yzx] = − [yxz] . (15.45)

Cartan (1894, 1952) was first to note that G2(7) is the isomorphism group of
octonions, ie. the group of transformations of octonion bases (written here in the
infinitesimal form)

e′a = (δab + iDab)eb

which preserve the octonionic multiplication rule (15.40). The reduction identity
(15.15) was first derived by Behrends et al. (1966) [in very different notation,
their equation (16)]. Tits also constructed the adjoint representation projection
operator for G2(7) by defining the derivation on an octonion algebra as

Dz =< x, y > z = −1
2
((x · y) · z) + 3

2
[(y, z)x− (x, z)y],

[Tits 1966, equation (23)] where

ea · eb ≡ fabcec, (15.46)

(ea, eb) ≡ −δab. (15.47)

Substituting x = xaea, we find

(Dz)d = −3xayb
(
1
2
δabδbd +

1
6
fabefecd

)
zc (15.48)

The term in the brackets is just the G2(7) adjoint representation projection op-
erator PA in (15.13) with normalization α = −3.
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118 CHAPTER 15. G2 FAMILY OF INVARIANCE GROUPS

15.6 Representations of G2

G2 is characterized by the fully antisymmetric cubic primitive invariant fabc.
Contracting with fabc, we are able to reduce any column higher than two boxes.
Hence, representations ofG2 are specified by Young tableaux (??) of form (qp00...).
Patera and Sankoff (1973) have chosen to label the simple roots in such a way
that the correspondence is
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Chapter 16

E8 family of invariance groups

In this chapter we continue the construction of invariance groups characterized
by a symmetric quadratic and an antisymmetric cubic primitive invariant. In the
preceeding chapter we proved that the cubic invariant must either satisfy the al-
ternativity relation (15.11), or the Jacobi relation (15.7). The first case has SO(3)
and G2 as the only solutions. Here we pursue the second possibility, restricted to
the case of no quartic primitive invariant (see fig. 15.1). The main results will be
the Diophantine conditions (16.10)-(16.15) and the projection operators for E8

family, given in table 16.1. 1

As, by assumption, the defining representation satisfies the Jacobi relation
(15.7), it is also the adjoint representation of some Lie group. Hence, in this
chapter, we denote the dimension of the defining representation by N , the cubic
invariant by the Lie algebra structure constants −iCijk, and draw the invariants
with the thin (adjoint) lines, as in (3.84).
The assumption that the defining representation is irreducible means in this

case that the Lie group is simple, and the quadratic casimir (Cartan-Killing
tensor) is proportional to the identity

= CA . (16.1)

In this chapter we shall usually chose normalization CA = 1. The Jacobi relation
(??) reduces a loop with three structure constants

=
1
2

. (16.2)

In order to reduce loops with four structure constants we turn to the reduction
of the A

⊗
A space.

1The inspiration for construction of sect. 15.1 came from Okubo (1979).
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16.1 Two-index tensors

Consider the decomposition of A
⊗
A tensors. As in sect. ?? they immediately

decompose into four subspaces:

=
1
CA

+
{

− 1
CA

}

+
1
N

+
{

− 1
N

}
1 = P|??| + P |??|

|??|
+ P• + Ps . (16.3)

Consider A
⊗
A→ A

⊗
A invariant matrix

Qij,kl =
1
CA

i
j

l

k

. (16.4)

By the Jacobi relation (??) or (15.6), Q has zero eigenvalue on the antisymmetric
subspace

QPa = Pa =
1
2

Pa =
1
2
PAPa = 0

so Q can decompose only the symmetric subspace.
The assumption that there is no primitive quartic invariant is the defining

relation for the E8 family. By this assumption Q2 is not linearly independent of
Qij,k�, fijmfmk� and δij ’s. On the traceless symmetric subspace this implies that
Q2Ps satisfies a relationship of form

0 =
{

+ p + q
}{

− 1
N

}
0 = (Q2 + pQ+ q)Ps . (16.5)

The coefficients p, q follow from symmetry considerations and the Jacobi relation.
Rotate each term in the above equation by 90o and the project onto the traceless
symmetric subspace;

0 =
{

+ p + q − 1 + p+ q
N

}
Ps

=
{

+ − p +
(
q − 21 + p+ q

N

) }
Ps .

Jacobi relation (??) relates the second term to the first:

=
{
2 −

(
1
2
+ p
)

+
(
q − 21 + p+ q

N

) }
Ps

0 =
(

Q2 − 1 + 2p
4

Q+
q

2
− 1 + p+ q

N

)
Ps . (16.6)
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16.1. TWO-INDEX TENSORS 121

Comparing the coefficients in (16.5) and (16.6) we obtain the characteristic equa-
tion for Q(

Q2 − 1
6
Q − 5

3(N + 2)

)
Ps = 0 . (16.7)

We shall use this equation to obtain a Diophantine condition on admissible
dimensions of the adjoint representation. Either eigenvalue of Q satisfies the
characteristic equation

λ2 − 1
6
λ− 5
3(N + 2)

= 0 ,

hence N can be expressed in terms of the eigenvalue

N + 2 =
5

3λ(λ− 1/6) = 10
{
(6− λ−1)− 12 + 62

6− λ−1

}
. (16.8)

It is convenient to reparametrize the two eigenvalues as

λ = − 1
m− 6 , λ∗ =

1
6
m

m− 6 . (16.9)

In terms of the parameter m, the dimension of the adjoint reperesentation is
given by

N = −122 + 10m+ 360
m

(16.10)

As N is an integer, allowed m are rationals built from any combination of sub-
factors of 360 = 23 · 32 · 5 in the numerator, and 1, 2, 5 or 10 in denominator,
45 distinct rationals in all. The existence of the pair of roots λ, λ∗ is reflected
in the symmetry of (16.10) under interchange m/6 ↔ 6/m, so we need to check
only the 27 rationals m > 6; we postpone the Diophantine analysis to sect. 16.4.
The associated projection operators are

P|??||??| = =
1

λ− λ∗
{

− λ∗ − 1− λ
∗

N

}
(16.11)

P|??||??|∗ = * =
1

λ∗ − λ

{
− λ − 1− λ

N

}
. (16.12)

To compute the dimensions of the two subspaces we first evaluate

trPsQ = − 1
N

= −N + 2
2
. (16.13)

The dimension of |??||??| is then given by

d|??||??| = trP|??||??| =
(N + 2)(1/λ+N − 1)

2(1− λ∗/λ) , (16.14)
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122 CHAPTER 16. E8 FAMILY OF INVARIANCE GROUPS

= + 1
α + (− 1

α )
E7 (10000000)⊗ (10000000) = (10000000) + (01000000) + (00000000)
E7 (1000000)⊗ (1000000) = (1000000) + (0100000) + (0000000)
E6 (000001)⊗ (000001) = (000001) + (001000) + (000000)
F4 (1000)⊗ (1000) = (1000) + (0100) + (0000)
D4 (0100)⊗ (0100) = (0100) + (1010) + (0000)
G2 (10)⊗ (10) = (10) + (03) + (00)
A2 (11)⊗ (11) = (11) + (12) + (21) + (00)
A1 (2)⊗ (2) = (2) + (0) + (4)
Dimensions N2 = N + N(N−3)

2 + 1
E8 272 = 351 + 27 + 351
E7 272 = 351 + 27 + 351
E6 272 = 351 + 27 + 351
F4 152 = 105 + 15 + 105
D4 152 = 105 + 15 + 105
G2 92 = 36 + 9 + 36
A2 62 = 15 + 6 + 15
A1 8 32 = 3 + 0 + 1

Table 16.1: E8 family Clebsch-Gordon series for
⊗
A2. The corresponding projection

operators are listed in (16.3), (16.11) and (16.12). The parameter m is defined in (16.9).
FILL THIS TABLE OUT!

and d|??||??|∗ is obtained by interchanging λ and λ∗. Substituting (16.10), (16.15)
leads to

d|??||??| =
5(m− 6)2(5m− 36)(2m− 9)

m(m+ 6)

d|??||??|∗ =
270(m− 6)2(m− 5)(m− 8)

m2(m+ 6)
. (16.15)

The solutions that survive the Diophantine conditions form the E8 family, listed
in table 16.1.
To summarize, in absence of a primitive 4-index invariant, A⊗A decomposes

into 5 irreducible representations

1 = P|??| + P |??|
|??|
+ P• + P|??||??| + P|??||??|∗ (16.16)

The decomposition is parametrized by integer m and is possible only if N and
d|??||??| satisfy Diophantine conditions (16.10), (16.15).
The general strategy for decomposition of higher tensor products is as fol-

lows; the equation (16.6) reduces Q2 to Q, Pr weighted by the eigenvalues λ, λ∗.
For higher tensor products we shall use the same result to decompose symmetric
subspaces. We shall refer to a decomposition as “boring” if it brings no new Dio-
phantine condition. As Q acts only on the symmetric subspaces, decompositions
of antisymmetric subspaces will in general be boring, as was already the case in
(16.3). We illustrate the technique by working out the decomposition of Sym3A

and |??||??| ⊗ |??| in the next two sections.
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16.2. DECOMPOSITION OF SYM3A 123

16.2 Decomposition of Sym3A

Consider SymA fully symmetrized subspace of ⊗3A. As the first step, project
out the A and A⊗A content of Sym3A:

P|??| =
3

N + 2
(16.17)

P |??|
|??|

=
6(N + 1)(N2 − 4)
5(N2 + 2N − 5)

rar (16.18)

P|??| projects out Sym3A→ A, and P |??|
|??|
projects out the antisymmetric subspace

(16.3) Sym3A → ∧2A. The ugly prefactor is a normalization, and will play no
role in what follows. We shall decompose the remainder of the Sym3A space

Pr = S − P|??| − P |??|
|??|
= r (16.19)

by the invariant tensor Q restricted to the Pr remainder subspace

Q = , Q̂ = r r Q̂ = PrQPr (16.20)

We can partially reduce Q̂2 using (16.6) but symmetrization leads also to a new
invariant tensor

Q̂2 =
1
3

rr +
2
3

rr . (16.21)

A calculation that requires applications of the Jacobi relation (3.105), symmetry
identities such as

rr = 0 (16.22)

and relies on the fact that Pr contains no A⊗ 2A subspaces yields

Q̂3 =
1
3

r rr +
2
3

r r (16.23)

Reducing by (16.7) leads to

Q̂3 = (λ+ λ∗)


13Q̂2 +

2
3

rr


− λλ∗Q̂ (16.24)

printed April 14, 2000 ∼DasGroup/book/chapter/e8family.tex 14apr2000



124 CHAPTER 16. E8 FAMILY OF INVARIANCE GROUPS

The extra tensor can be eliminated by (16.21), and the result is a cubic equation
for Q̂ (where we have substituted λ+ λ∗ = 1/6):

0 =
(
Q̂ − 1/18

)(
Q̂ − λ

)(
Q̂ − λ∗

)
Pr (16.25)

The projection operators for the corresponding three subspaces

P3 =

(
Q̂ − λ

)(
Q̂ − λ∗

)
(1/18− λ) (1/18− λ∗)Pr

= − 162 (m− 6)2
(m+ 3)(m+ 12)

{
Q̂2 − 1

6
Q̂ − m

6(m− 6)2
}
Pr (16.26)

P4 =

(
Q̂ − 1/18

)(
Q̂ − λ∗

)
(λ− 1/18) (λ− λ∗) Pr

=
54 (m− 6)2
(m+ 3)(m+ 6)

{
Q̂2 − m− 24

18(m− 6)Q̂+
1

18(m− 6)

}
Pr (16.27)

P4∗ =

(
Q̂ − 1/18

)(
Q̂ − λ

)
(λ∗ − 1/18) (λ∗ − λ) Pr

=
108 (m− 6)2
(m+ 6)(m+ 12)

{
Q̂2 − 2(m− 3)

9(m− 6)Q̂+
m

108(m− 6)

}
Pr (16.28)

The presumption is (still to be proven for a general tensor product) that only
reductions occur in the symmetric subspaces, always via the Q characteristic
equation. As overall scale of Q is arbitrary, there is only one rational parameter
in the problem, either λ/λ∗ or m, or whatever seems conveninent. Hence all
dimensions and any coefficients will be in m.
To proceed, we follow the method outlined in appendix A. On P|??|, P |??|

|??|
subspaces SQ has eigenvalues

SQP|??| = =
1
3

→ λ|??| = 1/3 (16.29)

SQP |??|
|??|

= a = (λ+ λ∗) r a → λ |??|
|??|
= 1/6 , (16.30)

so the eigenvalues are λ|??| = 1/3, λ |??|
|??|
= 1/6, λ3 = 1/18, λ4 = λ, λ4∗ = λ∗. The

dimension formulas (A.8) now require evaluation of

trSQ = = −N(N + 2)
6

(16.31)

tr (SQ)2 = birdTrack =
N(3N + 16)

36
. (16.32)
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Substituting into (A.8) we obtain the dimensions of the three representations:

d3 =
27 (m− 5) (m− 8) (2m− 15) (2m− 9) (5m− 36) (5m− 24)

m2(3 +m)(12 +m)
(16.33)

d4 =
10(m− 6)2 (m− 5) (m− 1) (2m− 9) (5m− 36) (5m− 24)

3m2(6 +m)(12 +m)
(16.34)

d4∗ =
5 (m− 5) (m− 8) (m− 6)2 (2m− 15) (5m− 36)

m3(3 +m)(6 +m)
(36−m) (16.35)

The integer solutions of the above Diophantine conditions are listed in table 16.4.
The main result of all this heavy birdtracking is that N > 248 is excluded

by the positivity of d4∗ , and N = 248 is special, as P4∗ = 0 implies existence of
a tensorial identity on the Sym3A subspace. That dimensions should all factor
into terms linear in m is althogehter not obvious at this point.

16.3 Decomposition of |??| ⊗ |??||??|∗

The decomposition of ⊗A2 tensors has split the traceless symmetric subspace
into a pair of representations which we denoted by |??||??|, |??||??|∗. Now we
turn to the decomposition of |??| ⊗ |??||??| Kronecker product. We commence by
identifying the A and ⊗A2 content of the |??|⊗|??||??| ∈ ⊗A3 Kronecker product.
The |??|, |??||??| and |??|

|??| components of |??| ⊗ |??||??| are projected out by

P|??| = K|??| (16.36)

P|??||??| = K|??||??| (16.37)

P |??|
|??|

= K |??|
|??|

= a (16.38)

where the |??| ⊗ |??||??| vertex is given by (16.11), and |??|
|??| is the not-adjoint

antisymmetric representation in (16.3). In this section double line denotes |??||??|
representation, and Kα are normalization factors given by ratios of dimensions
and appropriate Dynkin indices (4.7) (or 3j coefficients (????)). As we shall not
need them here, we do not write them out explicitly.
We shall use the invariant tensor

R = (16.39)

to decompose the remainder subspace

Pr = 1− P|??| − P|??||??| − P |??|
|??|
. (16.40)
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126 CHAPTER 16. E8 FAMILY OF INVARIANCE GROUPS

The eigenvalue of R on each of the above subspaces follows from invariance con-
ditions (??) and the eigenvalue equation (3.50) QP|??||??| = λP|??||??| (16.11):

RP|??| = = (1− λ)P|??| (16.41)

RP|??||??| = =
1
2
P|??||??| (16.42)

RP |??|
|??|

= a = (1/2− λ)P |??|
|??|
. (16.43)

The characteristic equation for R projected to the remained subspace (cf. (3.54))
is obtained by evaluating R2 and R3:

R2Pr = Pr = 2
{

+
}
Pr

=
{
(λ+ λ∗)R̂− 2λλ∗ + 2

}
Pr (16.44)

R3Pr = (λ+ λ∗)R̂2 − 4λλ∗R̂+ 4(λ+ λ∗) Pr (16.45)

We have used (16.7), invariance, and the symmetry identity (16.22).

= 0 (16.46)

Eliminating the extra invariant tensor in (16.45) by (16.44) we find that R satisfies
a cubic equation symmetric under interchange λ↔ λ∗

0 = (R− (λ+ λ∗))(R− 2λ)(R− 2λ∗)Pr , (16.47)

so the eigenvalues ofR on the six subspaces of |??|⊗|??||??| are λ|??|, λ|??||??|, λBB, λ5, λ6, λ7 =
1− λ, 1/2, 1/2− λ, 1/6, 2λ, 2λ∗. As in the preceeding section, this leads to decom-
position of the remainder subspace Pr into three subspaces:

P5 = − 1
(λ− λ∗)2 (R− 2λ)(R− 2λ∗)Pr (16.48)

P6 =
1

2(λ− λ∗)2 (R− (λ+ λ∗))(R− 2λ∗)Pr (16.49)

P7 =
1

2(λ− λ∗)2 (R− (λ+ λ∗))(R− 2λ)Pr (16.50)

Dimension formulas of sect. ?? require that we evaluate

tr 1 = Nd |??|
|??|
, trR = = 0

trR2 = = 2
{

−
}
= 2(1− λ)d|??||??| (16.51)
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16.4. DIOPHANTINE CONDITIONS 127

5 8 9 10 12 15 18 24 30 36
N 0 3 8 14 28 52 78 133 190 248
d1 0 0 1 7 56 273 650 1463 1520 0
d2 0 -3 0 64 700 4096 11648 40755 87040 147250
d3 0 0 27 189 1701 10829 34749 152152 392445 779247

Table 16.2: All solutions of Diophantine conditions (16.52–16.54); a bogus
m = 30 solution still survives this set of conditions. This solution will be DG:
MANGLER ET ORD HER, SOM JEG IKKE KAN LAESE eliminated by (??)
which says that it does not exist for the F4 subgroup of E8.

Substituting into (A.8) we obtain the dimensions of the three representations

d5 =
27(m− 15)(2m− 15)(m− 8)(2m− 9)(5m− 24)(5m− 36)

m2(m+ 3)(m+ 12)
(16.52)

d6 =
5(m− 5)(2m− 15)(m− 6)2(m− 8)(5m− 36)

m3(m+ 3)(m+ 6)
(36−m) (16.53)

d7 =
5120(m− 5)(2m− 15)(m− 6)2(m− 9)(2m− 9)

m3(m+ 6)(m+ 12)
(16.54)

We see that nothing significant is gained beyond the decomposition of Sym3A of
the preceeding section; we have recovered representations (??), (??). Represen-
tation (16.54) is new, but yields no new Diophantine condition. If we consider
|??|×|??||??|∗ instead, the only difference is that (16.51) changes to 2(1−λ∗)d∗|??||??|
and we obtain 2 conjugate representations corresponding to m/6 ↔ 6/m ex-
change;

d∗6 = (16.55)

d∗7 = (16.56)

16.4 Diophantine conditions

This Diophantine condition is satisfied only form = 8, 9, 10, 12, 18, 20, 24, 30, 36, 40
and 45. As we shall show later, m = 20, 30 and 40 are bogus solutions, which
do not survive further Diophantine conditions.
The integer solutions of the above Diophantine conditions are listed in ta-

ble 16.4. The formulas (16.52)-(16.54) yield, upon substitution of N , λ, λ∗ the
correct Clebsch-Gordan series for all members of the E8 family, table 16.4.

Remark 16.1 Remains to be done: P1 = 0 ⇒ what special E8 rela-
tion? (reduction of 6-loops birdTrack?)

16.5 Generalized Young tableaux for E8

A very tedious table goes in here...?
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128 CHAPTER 16. E8 FAMILY OF INVARIANCE GROUPS

16.6 Conjectures of Deligne

The construction of the E8 family outlined in this chapter dates from early 1980’s
and was partially published in ref. [11]. In a 1995 paper Deligne [19] attributed
to Vogel [18] the observation that for the 5 exceptional groups the antisymmetric
∧2A and the symmetric Sym2A adjoint representation tensor products P|??| +
P |??|

|??|
and P• + Ps in (16.3), respectively) can be decomposed into irreducible

representations in a uniform way, and that their dimensions and casimirs are
rational functions of parameter a, related to the parameter m of (16.9) by

a =
1

m− 6 . (16.57)

Here a is a = Φ(α, α), where α is the largest weight of the representation, and
Φ the canonical bilinear form for the Lie algebra, in the notation of Bourbaki.
Deligne conjectured that for A1, A2, G2, F4, E6, E7 and E8, the dimensions
of higher tensor representations

⊗k A could likewise be expressed as rational
functions of parameter a.
The conjecture was checked on computer by Cohen and de Man [20] for di-

mensions and quadratic casimirs for all representations up to
⊗4A. They note

that “miraculously for all these rational functions both numerator and denomi-
nator factor in Q[a] as a product of linear factors”. That can perhaps be deduced
from the method of decomposing symmetric subspaces outlined in this chapter.
Cohen and de Man have also observed that D4 should be added to Deligne’s

list, in agreement with the definition of the E8 family construction here, consist-
ing of A1, A2, G2, D4, F4, E6, E7 and E8. Their algebra goes way beyond the
results given in this chapter, which were originally obtained by paper and pencil
birdtrack computations performed on trains while commuting between Gothen-
burg and Copenhagen. Cohen and de Man give formulas for 25 representations,
7 of which are also computed here.
In current context −a = λ∗ = 1/6 − λ is the symmetric space eigenvalue of

the invariant tensor Q, my (16.9). The only role of the tensor Q is to split the
traceless symmetric subspace, and its overall scale is arbitrary. In this chapter
scale was fixed by setting the adjoint representation quadratic casimir equal to
unity, CA = 1 in (16.1). Deligne [19] and Cohen and de Man [20] fix the scale of
their λ, λ∗ by setting λ+λ∗ = 1, so their dimension formulas are stated in terms
of a parameter related to the λ used here by λCdM = 6λ.
They refer to the interchange of the roots λ↔ λ∗ as “involution ”.
My (16.52) is their A
My (16.53) is their Y ∗

3

My (16.54) is their C∗
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Chapter 17

E6 family of invariance groups

In this chapter we construct all invariance groups whose primitive invariant ten-
sors are δab and fully symmetric dabc, d

abc. The reduction of ⊗V 2 space yields a
rule for evaluation of the loop contraction of four d-invariants (??). The reduction
of V ⊗ V yields the first Diophantine condition (??) on the allowed dimensions
of the defining representation. The reduction of ⊗V 3 tensors is straightforward,
but the reduction of A ⊗ V space yields the second Diophantine condition (d4
in table ??), and limits n to n ≤ 27. The solutions of Diophantine conditions
form the E6 family consisting of E6, A5, A2 + A2 and A2. For the interesting
E6(n = 27) case the cubic casimir (??) vanishes. This property of E6 enables
us to evaluate loop contractions of six d-invariants (??), reduce ⊗A2 tensors (ta-
ble ??) and investigate relations among the higher order casimirs of E6 (sect. ??).
In sect. 17.7 we introduce a Young tableaux notation for any representation of
E6 and exemplify its use in construction of Clebsch-Gordan series, table ??.

17.1 Reduction of two-index tensors

By assumption the primitive invariants set that we shall study

δba = a b

dabc =
a

b c

= dbac = dacb

dabc =
a

b c

(17.1)

Irreducibility of the defining n-dimensional representation implies

dabcd
bcd = αδda

= α (17.2)

129
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The value of α depends on the normalisation convention.1 We find it convenient
to set it to α = 1.
We can immediately write a Clebsch-Gordon series for the two-index tensors.

The symmetric subspace in (8.5) is reduced by the dabcdcde invariant:

17.2 Mixed two-index tensors

17.3 Diophantine conditions and the E6 family

The expressions for the dimensions of various representations (see tables in this
chapter) are ratios of polynomials in n, the dimension of the defining representa-
tion. As the dimension of a representation should be a non-negative integer, these
relations are the Diophantine conditions on the allowed values of n. The dimen-
sions of the adjoint representation (??) is one such condition; the dimension of λ4

from table ?? another. Furthermore, the positivity of the dimension λ4 restricts
the solutions to n ≤ 27. This leaves us with six solutions n = 3, 6, 9, 15, 21, 27.
As we shall show this in chapter ??. Of these solutions only n = 21 is spurious
- the remaining five solutions are realized as the E6 row of the magic triangle,
table ??.
In the Cartan notation, the corresponding Lie algebras are A2, A2 + A2, A5

and E6. We do not need to prove this, as for E6 Springer (see sect. ?? ). We
call these invariance groups the E6 family, and list the corresponding dimensions,
Dynkin labels and Dynkin indices in the tables of this chapter.

17.4 Three-index tensors

The ⊗V 3 tensor subspaces cf. SU(n) listed in table ?? are decomposed by invari-
ant matrices constructed from the cubic primitive dabc in the following manner.

17.4.1 Fully symmetric ⊗V 3 tensors

17.4.2 Mixed symmetry ⊗V 3 tensors

17.4.3 Fully antisymmetric ⊗V 3 tensors

17.5 Defining ⊗ adjoint tensors

We turn next to the determination of the Clebsch-Gordan series for V ⊗ A rep-
resentations. As always, this series contains the n-dimensional representation

17.6 Two-index adjoint tensors

1Freudenthal (1954) takes α = 5/2. Konstein (1977) and Kephart (1981) take α = 10.
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17.7. DYNKIN LABELS AND YOUNG TABLEAUX FOR E6 131

17.6.1 Reduction of antisymmetric 3-index tensors

17.7 Dynkin labels and Young tableaux for E6

17.8 Casimirs for E6

17.9 Subgroups of E6

Why is A2(6) in E6 family?

The symmetric two-index representation (??) of SU(3) is 6 dimensional. The
symmetric cubic invariant (17.2) can be constructed using a pair of Levi-Civita
tensors
Contractions of several dabc’s can be reduced using the projection operator

properties (5.32) of Levi-Civita tensors, yielding expressions like
etc. The reader can check that, for example, the Springer relation (??) is

satisfied.

Why is A5(15) in E6 family?

The antisymmetric two-quark representation (??) of A5 = SU(6) is 15 dimen-
sional. The symmetric cubic invariant (17.2) is constructed using the Levi-Civita
invariant (5.28) for SU(6)
The reader is invited to check the correctness of the primitivity assumption

(??). All the other results of this chapter then follow.

Is A2 +A2(9) in E6 family?

Exercise for the reader: unravel the A2 + A2 9-dimensional representation, con-
struct the dabc invariant.

17.10 Springer relation

Substituting PA into the invariance condition (5.58) for dabc one obtains the
Springer (1959, 1962) relation
The Springer relation can be used to eliminate one of the three possible con-

tractions of the three possible contractions of three dabc’s.

17.10.1 Springer’s construction of E6

In the preceding sections we have given a self-contained derivation of the E6

family, in a form unfamiliar to most experts. Here we shall translate our results
into more established notations, and identify those relations which have already
been given by other authors.
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132 CHAPTER 17. E6 FAMILY OF INVARIANCE GROUPS

Consider the exceptional simple Jordan algebra A of Hermitian [3 × 3] ma-
trices x with octonian matrix elements Freudenthal 1954, 1964), and its dual A
(complex conjugate of A). Following Springer (1959, 1962), define products

(x, y) = tr (xy),

x× y = z

3 < x, y, z > = (x× y, z), (17.3)

and assume that they satisfy

(x× x)× (x× x) =< x, x, x > x (17.4)

Expanding x, x in ?? , we chose a normalization

(ea, eb) = δbaa, b = 1, 2, ......, 27 (17.5)

and define

ea × eb = dabcec. (17.6)

Substituting into ( ), we obtain ( ), with α = 5
2 . Freudenthal and Springer prove

that ( ) is satisfied if dabc is related to the usual Jordan product

ea · eb =??dabcec, (17.7)

by

dabc ≡??dabc −
1
2
(δabtr (ec) + δactr (eb) + δbctr (ea))

+
1
2
tr (ea) · tr (eb) · tr (ec).(17.8)

E6(27) is the group of isomorphisms which leave x, y = δbax
ayb and <

x, y, z >= dabcxaybzc invariant. The derivation was constructed by Freudenthal
(1954) (his equation (1.21)):

Dz ≡< x, y > z = 2yx(xxz)− 1
2
− 1

6
< x,y > z. (17.9)

Substituting ( ) we obtain the projector ( ):

(Dz)d = −3xaybP acbd zc. (17.10)

The object < z, y > considered by Freudenthal is in our notation and the above
factor −3 is the normalization ( ), Freudenthal’s equation (1.26). The invariance
of the x-product is given by Freudenthal as

< x, x× x >>= 0. (17.11)

Substituting ( ) we obtain ( ) for dabc.
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Chapter 18

F4 family of invariance groups

In this chapter we classify and construct all invariance groups whose primitive
invariant tensors are a symmetric bilinear dab, and a symmetric cubic dabc, satis-
fying the relation (18.15). The result are summarized in table ??.
Take as primitives a symmetric quadratic invariant dab and a symmetric cubic

invariant dabc. As explained in chapter ??, we can use dab to lower all indices. In
the birdtrack notation, we drop the circles denoting dab, and we drop arrows on
all lines:

dab = a b

dabc = dbac = dacb = = (18.1)

The defining n-dimensional representation is by assumption irreducible, so

dabcdbcd = αδad

= α (18.2)

dabb = 0

= 0 (18.3)

(Otherwise, we could use to project out a 1-dimensional subspace). The
value of α depends on the normalisation convention (Schafer (1966) takes α =
7/3).

18.1 Two-index tensors

dabc is a Clebsch-Gordan coefficient for V ⊗V → V , so V ⊗V space is decomposed
into at least four subspaces:

= +
1
n

+
1
α
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134 CHAPTER 18. F4 FAMILY OF INVARIANCE GROUPS{
− 1
α

− 1
n

}
1 = A+ P3 + P1 (18.4)

We turn next to the decompositions induced by the invariant matrix

Qab,cd =
1
α

(18.5)

We shall assume that Q does not decompose the symmetric subspace, ie. that
its symmetrized projection can be expressed as

1
α

=
A

α
+B + C (18.6)

Together with the list of primitives (18.1), this assumption defines the F4 family1.
This corresponds to the assumption (15.3) in the construction of G2. In the
present case, we have not been able to construct the F4 family without assuming
(18.6).
Symmetrizing (18.6) in all legs we obtain

1−A
α
= (B + C) (18.7)

Neither of the tensors can vanish, as contractions with δ’s would lead to

0 = ⇒ n+ 2 = 0
0 = ⇒ α = 0 (18.8)

If the coefficients were to vanish, 1−A = B + C = 0, we would have

1
αB

{
−

}
= − (18.9)

Antisymmetrizing the top two legs we find that in this case also the antisymmetric
part of the invariant matrix Q (18.5) is reducible:

1
αB

= (18.10)

This would imply that the adjoint representation of SO(n) would also be the
adjoint representation for the invariance group of dabc. However, the invariance
condition

0 = (18.11)

1 Invariance groups with primitives dab, dabc which do not satisfy (18.6) also exist. The most
familiar example is the adjoint representation of SU(n), n ≥ 4, where dabc is the Gell-Mann (?!)
symmetric tensor.
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18.1. TWO-INDEX TENSORS 135

cannot be satisfied for any positive dimension n :

0 = birdTrack ⇒ 0 = birdTrack− birdTrack

⇒ n+ 1 = 0 (18.12)

Hence the coefficients in (18.7) are non-vanishing, and are fixed by tracing with
δab:

1
α

=
2
n+ 2

(18.13)

Expanding the symmetrization operator we can write this relation as

1
α

+
1
2α

=
2
n+ 2

+
1
n+ 2

(18.14)

(this fixes A = −1/2, B = 2/(n+ 2), C = 1/(n+ 2) in (18.6)), or as

+ + =
2α
n+ 2

{
+ +

}

dabedecd + dadedebc + dacedebd =
2α
n+ 2

(δabδcd + δadδbc + δacδbd) . (18.15)

In sect. 18.3 we shall show that this relation can be interpreted as the character-
istic equation for [3×3] octonian matrices. This is the defining relation for the
F4 family.
The eigenvalue of the invariant matrix Q on the n-dimensional subspace can

now be computed from (18.14)

1
α

+
1
2

=
2
n+ 2

1
α

= −1
2
n− 2
n+ 2

(18.16)

Let us now turn to the action of the invariant matrix Q on the antisymmetric
subspace in (18.4). We evaluate Q2 with the help of the characteristic equation
(18.14):

= birdTrack+ birdTrack

=
1
2

− 1
2
birdTrack− 1

2
birdTrack+

2α
n+ 2

birdTrack+
2α2

n+ 2

1
2

=
α

4
n− 2
n+ 2

+
α

n+ 2
birdTrack+

α2

n+ 2

0 = A

(
Q2 − 1

2
n− 6
n+ 2

Q − 2
n+ a

)
(18.17)
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136 CHAPTER 18. F4 FAMILY OF INVARIANCE GROUPS

The roots are λA = −1/2, λ5 = 4/(n+ 2), and the associated projectors are

PA =
8

n+ 10

{
+
n+ 2
4α

}
(18.18)

P5 =
n+ 2
n+ 10

{
− 2
α

}
(18.19)

The dimensions and Dynkin indices are listed in PA is the projector for the adjoint
representation, as it satisfies the invariance condition (18.11):

birdTrack = −1
2
birdTrack

PAQ = −1
2
PA (18.20)

18.2 Defining ⊗ adjoint tensors

18.2.1 Two-index adjoint tensors

18.3 Jordan algebra and F4(26)

Consider the exceptional simple Jordan algebra of traceless Hermitian [3×3]
matrices x with octonion matrix elements (Freudenthal 1964, Schafer 1966).
The nonassociative multiplication rule for elements x can be written in a ba-
sis x = xaea as

eaeb = ebea =
δab
3

I+ dabcec

a, b, c = 1, 2.......26. (18.21)

where tr (ea) = 0 and I is the [3×3] unit matrix. Traceless [3×3] matrices satisfy
a characteristic equation

x3 − 1
2
tr (x2)x− 1

3
tr (x3)I = 0 (18.22)

Substituting (?!) we obtain (?!) with normalization α = 7
3 . Substituting (?!)

into the Jordan identity (Schafer 1966)

(xy)x2 = x(yx2) (18.23)

we obtain (?!). It is interesting to note that the Jordan identity (which defines Jor-
dan algebra in the way Jacobi identity defines Lie algebra) is a trivial consequence
of (?!). F4(28) is the group of isomorphisms which leave forms tr (xy) = δabxaxb
and tr (xyz) = dabcxaybzc invariant. The derivation is given by Tits (1966) as

Dz = (xz)y − x(zy) . Tits 1966, equation(28) (18.24)

Substituting (18.21) we obtain the adjoint representation projection operator
(18.18)

(Dz)d = −3xayb
(
δadδbc − δacδbd

9
+
dbcedead − dacedebd

3

)
zc (18.25)
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Chapter 19

E7 family of invariance groups

E7 family of invariance groups, negative dimensions: published (birdtrack free)
as “Negative dimensions and E7symmetry”, Nucl. Phys. B188, 373 (1981).
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Chapter 20

Exceptional magic

The study of invariance algebras pursued in the preceding chapters might appear
to be a rather haphazard affair. Given a set of primitives, one gets some Diophan-
tine equations, constructs the family of invariance algebras and moves onto the
next set of primitives. However, a closer scrutiny of the Diophantine conditions
leads to a surprise: most of the Diophantine equations are special cases of one
and the same Diophantine equation, and they magically arrange all exceptional
families into a single triangular pattern which we shall call the “magic triangle”.

20.1 Magic triangle

Our construction of invariance algebras has generated a series of Diophantine
conditions which we now summarize. The adjoint representation conditions are:

F4 family N = 3n− 36 + 360
n+ 10

E6 family N = 4n− 40 + 360
n+ 9

E7 family N = 3n− 45 + 360
n/2 + 8

E8 family N = 10m− 122 + 360
m

(20.1)

There is a striking similarity between the conditions for different families. If we
define

F4 family m = n+ 10

E6 family m = n+ 9

E7 family m = n/2 + 8 (20.2)

we can parametrize all the solutions of the above Diophantine conditions with a
single integer m, see table 20.1. The Clebsch-Gordan series for A⊗ V Kronecker
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140 CHAPTER 20. EXCEPTIONAL MAGIC

m 8 9 10 12 15 18 20 24 30 36 40 · · · 360
F4 0 0 3 8 . 21 . 52 . · · · .
E6 0 0 2 8 16 . 35 36 78 . · · · .
E7 0 1 3 9 21 35 . 66 99 133 . · · · .
E8 3 8 14 28 52 78 . 133 190 248 . · · · .

Table 20.1: All solutions of Diophantine conditions (20.1) not eliminated by
other Diophantine conditions of chapter 15 through 18; those are marked by “·”.

products also show a striking similarity. The characteristic equations (16.7), (??),
(??) and (??) are the one and the same equation

(Q− 1)
(
Q+

6
m

)
Pr = 0 (20.3)

Here Pr removes the defining and ⊗V 2 subspaces, and we have rescaled the E8

operator Q (16.7) by factor 2. (Role of the Q operator is only to distinguish
between two subspaces - we are free to rescale it as we wish).
In the dimensions of the associated representations, eigenvalue 6/m introduces

a new Diophantine denominator m+6. For example, from (16.15), table ??, (??)
and (??), the highest dimensional representation in V ⊗ A has dimension (in
terms of parametrization (20.2)):

F4 family 3(m+ 6)2 − 156(m+ 6) + 2673− 15120
m+ 6

E6 family 4(m+ 6)2 − 188(m+ 6) + 2928− 15120
m+ 6

E7 family 2
{
6(m+ 6)2 − 246(m+ 6) + 3348− 15120

m+ 6

}
E8 family 50m2 − 1485m+ 19350 + 27 · 360

m
− 11 · 15120
m+ 6

(20.4)

These Diophantine conditions eliminate most of the spurious solutions of (20.1);
only the m = 30, 60, 90 and 120 spurious solutions survive, but are in turn
eliminated by further conditions. For the E8 family V ⊗ V = V ⊗ A = A ⊗ A
(the defining representation is the adjoint representation), hence the Diophantine
condition (20.4) includes both 1/m and 1/(m+ 6) terms.
Not only can the four Diophantine conditions (20.1) be parametrized by a

single integer m; the list of solutions table 20.1 turns out to be symmetric under
the flip across the diagonal. F4 solutions are the same as those in the m = 15
column, and so on. This suggests that the rows be parametrized by an integer
;, in a fashion symmetric to the column parametrization by m. Indeed, the
requirement of m↔ ; symmetry leads to a unique expression which contains the
four Diophantine conditions (20.1) as special cases:

N =
(;− 6)(m− 6)

3
− 72 + 360

;
+
360
m

(20.5)
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20.1. MAGIC TRIANGLE 141

We take m = 8, 9, 10, 12, 15, 24 and 36 as all the solutions allowed in table 20.1.
By symmetry ; takes the same values. All the solutions fill up the magic triangle,
table 20.1. Within each entry the number in the upper left corner is N , the
dimension of the corresponding Lie algebra, and the number in the lower left
corner is n, the dimension of the defining representation. The expressions for n
for the top four rows are guesses. The triangle is called magic, partly because we
arrived to it by magic, and partly because it contains Freudenthal’s (1964) magic
square, marked by the dotted line in table 20.1.
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142 CHAPTER 20. EXCEPTIONAL MAGIC

E 8
248

248

E 7
56

133

D6

66

32

E 7

133

133
E 6

78

78

F 4

52

26

F 4

52

52

A5
15

35

A5

35

20
C3

21

14

A2

8

6
E 6

78

27
2A2

16

9

C3

21

14
A2

8

8
A1

5

3

3A1

9

4

3A1

9

8

A1

3

3

A2

8

8
A1

3

3

U(1)
1

1

A1

3

4

(1)U2
2

2

(1)U2
3

2

U(1)
1

2

0

1

0

1

0

1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

G2

14

14
D4

28

28

D4

28

8

2G
14

7

A2

8

3

A1

3

20

0

Table 20.2: Magic triangle. All exceptional Lie groups defining and adjoint
representations form an array of the solutions of the Diophantine condition (20.5).
Within each entry the number in the upper left corner is N , the dimension of
the corresponding Lie algebra, and the number in the lower left corner is n, the
dimension of the defining representation.
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Chapter 21

Magic negative dimensions

21.1 E7 and SO(4)

21.2 E6 and SU(3)
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Appendix A

Recursive decomposition

This appendix deals with practicalities of computing eigenvalues, and is best
skipped on first reading.
Let P stand for a projection onto a subspace, or the entire space (in which case

P = 1). Assume that the subspace has already been reduced into m irreducible
subspaces and a reminder

P =
m∑
γ=1

Pγ + Pr (A.1)

Now adjoin a new invariant matrix Q to the set of invariants. By assumption,
Q does not reduce further the γ = 1, 2, . . . ,m subspaces, ie. has eigenvalues
λ1, λ2, . . . , λm

QPγ = λγPγ (no sum). (A.2)

on the γth subspace. We construct an invariant matrix Q̂ restricted to the re-
maining (as yet not decomposed) subspace by

Q̂ := PrQPr = PQP −
m∑
γ=1

λγPγ (A.3)

As Pr is a finite dimensional subspace, Q̂ satisfies a minimal characteristic equa-
tion of order n ≥ 2

n∑
k=0

akQ̂
k =

m+n∏
α=m+1

(Q̂− λαPr) = 0 (A.4)

with the corresponding projection operators (3.45).

Pα =
∏
β �=α

Q̂− λβ
λα − λβ

Pr , α = {m+ 1, . . . ,m+ n} (A.5)

“Minimal” in the above means that we drop repeated roots, so all eigenvalues are
distinct. Q̂ is an awkward object in computations, so we reexpress the projection
operator in terms of Q as follows.
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146 APPENDIX A. RECURSIVE DECOMPOSITION

Define first the polynomial obtained by deleting the (Q̂ − λα) factor from
(A.4)

∏
β �=α
(x− λβ) =

n−1∑
k=0

bkx
k , α, β = m+ 1, . . .m+ n , (A.6)

where the expansion coefficient bk = b
(α)
k depends on the choice of the subspace

α. Substituting Pr = P −
∑m

α=1 Pα and using the orthonomality of Pα we obtain
an alternative formula for the projection operators

Pα =
1∑
bkλkα

n−1∑
k=0

bk


(PQ)k −

m∑
γ=1

λkαPγ


P (A.7)

and dimensions

dα = trPα =
1∑
bkλkα

n−1∑
k=0

bk


tr (PQ)k −

m∑
γ=1

λkγdγ


 . (A.8)

The utility of this formula lies in the fact that once the polynomial (A.6) is
given only new data it requires are the traces tr (PQ)k, and those are simpler to
evaluate than tr Q̂k.
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Appendix B

Properties of Young
Projections

(H. Elvang and P. Cvitanović)

In this appendix we prove the properties of the Young projections stated in
sect. 8.4.

B.1 Uniqueness of Young projection operators

We now show that the Young projection operator PY is well-defined by proving
the existence and uniqueness (up to sign) of a non-vanishing connection between
the symmetrizers and antisymmetrizers in PY.
The proof is induction over the number of columns t in the Young diagram

Y. For t = 1 the Young projection operator consists of one antisymmetrizer of
length s and s symmetrizers of length 1, and clearly the connection can only be
made in one way, up to an overall sign.
Assume the result to be valid for Young projections derived from Young dia-

grams with t− 1 columns. Let Y be a Young diagram with t columns. The lines
from A1 in PY must connect to different symmetrizers for the connection to be
non-zero. Since there are exactly |A1| symmetrizers in PY, this can be done in
essentially one way, since which line goes to which symmetrizer is only a matter of
an overall sign, and where a line enters a symmetrizer is irrelevant due to (5.9).
After having connected A1, connecting the symmetry operators in the rest of

PY is the problem of connecting symmetrizers to antisymmetrizers in the Young
projection PY′ , where Y′ is the Young diagram obtained from Y by slicing off the
first column. Thus Y′ has k− 1 columns, so by the induction hypothesis the rest
of the symmetry operators in PY can be connected in exactly one non-vanishing
way (up to sign).
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148 APPENDIX B. PROPERTIES OF YOUNG PROJECTIONS

The principles are illustrated below:

Y

on
e!

Y’Y

co
nn

ec
tio

n

(B.1)

B.2 Normalization

We now derive the formula for the normalization factor αY such that the Young
projection operators are idempotent, P 2

Y = PY. By the normalization of the
symmetry operators, Young projection operators derived from fully symmetrical
or antisymmetrical Young tableaux will be idempotent with αY = 1.
P 2

Y is simply PY connected to PY, hence it may be viewed as a set of outer
symmetry operators connected by a set of inner symmetry operators. Expanding
all the inner symmetrisers and using the uniqueness of the non-zero connection
between the symmetrizers and antisymmetrizers of the Young projection, we find
that each term in the expansion is either 0 or a version of PY. In fact, the number
of non-zero terms — denote it ‖Y‖ — is just the number |Y| defined in sect. 8.4.
For a Young diagram with s rows and t columns there will be a factor of 1

|Si|
( 1
|Ai|) for expansion of each inner (anti)symmetrizer, thus we find

P 2
Y = α2

Y =
α2

Y∏s
i=1 |Si|!

∏t
j=1 |Aj |!

∑
mess

sp
ag

hett
i

= αY
|Y|∏s

i=1 |Si|!
∏t
j=1 |Aj |!

PY. (B.2)

Idempotency is then achieved by taking

αY =

∏s
i=1 |Si|!

∏t
j=1 |Aj |!

|Y| . (B.3)

Let Y be a Young tableau with |A1| = s, |S1| = t, |S2| = t′ etc. We count in
how many ways the lines entering the inner A1 pass through it to yield non-zero
connections. We refer to

Y =

...

...

... ...

S s+t
1

Ss

S2

A A21 At

...
At’

+t’-1
s-1
-1

� P 2
Y = α

2
Y

���������������������� ���������������������� ������������������������ ������������1st line

...
... ...

...
...

S S1

st
h 

lin
e

1

S

S

2

A1 A1

...
...

2n
d 

lin
e

...

... ... ...

...

t

(B.4)
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B.3. ORTHOGONALITY 149

in the following. For each of the inner symmetrizers there must be exactly one
from A1. The first line can pass through A1 in s ways and without loss of
generality we may take it to pass straight through, connecting to S1 where it can
pass through in t ways. Thus for the first line, there were s+ t− 1 allowed roads
through the inner symmetry operators. The second line may now pass through
A1 in s− 1 ways, and we can take it to pass straight through to S2, where it has
t′ possibilities. Thus we have found (s − 1) + t′ − 1 options for the second line.
With a similar reasoning we find (s− 2) + t′′ − 1 allowed ways for the third line
etc.
Let wY be the number of ways of passing the m lines entering A1 through the

inner symmetry operators. wY is then the product of the numbers found above,
wY = (s + t − 1)(s − 1 + t′ − 1)(s − 2 + t′′ − 1) · · ·. Note that when calculating
|Y| the product of the numbers in the first column of the Young diagram is wY.
We show ‖Y‖ = |Y| by induction on the number of columns t in the Young

diagram Y.
For a single column Young diagram, |Y| = |A1|!, and the number of non-zero

ways to connect the A1 symmetrizers to A1 in PY is |A1|!, hence ‖Y‖ = |Y| for
t = 1.
Assume that ‖Z‖ = |Z| for any Young diagram Z with t − 1 columns. Let Y

be a Young diagram with t columns and let Y′ be the Young diagram obtained
form Y by removal of the first column. wY is the number of ways the lines
entering the first inner antisymmetrizer in P 2

Y are allowed to pass through the
inner symmetry operators. Finding the number of allowed paths for the rest of
the lines is the problem of finding the number of allowed paths through the inner
symmetry operators of P 2

Y′ , which is ‖Y′‖ = |Y′|. Now we have ‖Y‖ = ‖Y′‖wY =
|Y′|wY = |Y|.

B.3 Orthogonality

If Y and Z denote Young tableaux derived from the same Young diagram, then
PYPZ = PZPY = δY,ZPY, since there is a non-trivial permutation of the lines
connecting the symmetry operators of Y with those of Z and by uniqueness of
the non-zero connection the result is either P 2 = P or 0.
Next, consider two differently shaped Young diagrams Y and Z with the same

number of boxes. Since at least one column must be bigger in (say) Y than
in Z and the p lines from the corresponding antisymmetrizer must connect to
different symmetrizers it is not possible to make a non-zero connection between
the antisymmetry operators of PY to the symmetrizers in PZ, and hence PYPZ =
0. By a similar argument, PZPY = 0.
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150 APPENDIX B. PROPERTIES OF YOUNG PROJECTIONS

B.4 The dimension formula

The dimensions of the irreducible representations can be calculated recursively
from the Young projection operators. Here is the recipe:
Let Y be a Young diagram and Y′ the Young diagram obtained from Y by

removal of the right-most box in the last row. Draw the Young projection oper-
ators corresponding to Y and Y′ and note that if we trace the last line of PY we
obtain PY′ multiplied by a factor.
Quite generally this contraction will look like

YRest of P

...

(B.5)

Using (5.11) and (5.20) we have

k m =
1
k


 k-

1 m + (k − 1) mk-
1


 (B.6)

=
1
km


(n− (m− 1))

k-
1

m
-1

+ (k − 1)

m
-1

k-
1

−(k − 1)(m− 1)

k-
1

m
-1




=
n−m+ k
km k-

1

m
-1

+
(k − 1)(m− 1)

km k-
1

m
-1 .

Inserting (B.6) into (B.5) we see that the first term is proportional to the pro-
jection PY′ . The second term vanishes:

YRest of P

lower loop

S* A*

m
-1

k-
1

(B.7)

The lines going into S∗ come from antisymmetrizers in the rest of the PY-diagram.
One of these lines, from Aa, say, must pass from S∗ through the lower loop to A∗

∼DasGroup/book/chapter/appendUnitary.tex 25feb2000 printed April 14, 2000
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and from A∗ connect to one of the symmetrizers, say SS in the rest of the PY-
diagram. But due to the construction of the connection between symmetrizers
and antisymmetrizers in a Young projection, there already is a line connecting
Ss to Aa. Hence the diagram vanishes.
The dimensionality formula follows by induction on the number of boxes in

the Young diagrams with the dimension of a single box Young diagram being
n. Let Y be a Young diagram with p boxes. We assume that the dimensionality
formula is valid for any Young diagram with p−1 boxes. With PY′ obtained from
PY as above, we have (using (B.6) and writing DY for the birdtrack diagram of
PY):

dimPY = αYtrDY =
n−m+ k
km

αYtrDY′ (B.8)

= (n−m+ k)αY′
|Y′|
|Y| trDY′ (B.9)

= (n−m+ k)fY′

|Y| =
fY
|Y| (B.10)

This completes the proof of the dimensionality formula (8.27).

B.5 Literature

• This introduction to the Young tableaux is based on Lichtenberg [4], Hamer-
mesh [5] and van der Waerden [6].

• The rules for reduction of direct products: See Lichtenberg [4]. The rules
are stated here as in (Elvang 1999).

• The method of constructing the Young projections directly from the Young
tableaux is described in van der Waerden [6], who ascribes the idea to von
Neumann. See also Kennedy slides [3].

• Alternative labelling of Young diagrams: Fischler??.

•
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